WA UNIVERSITY of WASHINGTON

Machine Instruction Encoding

CSE 410 22wi
Lecture 04

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Assembly Language / Assemblers

+» We have been writing instructions in assembly code

+» The goal of assembly code is to be convenient for
humans to read/write

+» What’s convenient for the hardware to read/execute
is bit strings

+» The main job of the assembler is to convert the string
(assembler) representation of instructions into the
binary representation

<+ When the program is run, it is the binary
representation that is loaded into memory

WA UNIVERSITY of WASHINGTON

GWIB54 S5y

Runtime

P46 sFmreviRyqg £iw

Memory

stack

data

instructions

procedure local variables
(explained later in course)

unused

.data segment variables

.text segment instructions

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Instruction Encoding

+» Example:
add x15, x14, x15 - 0x00f707b3
0000 000011110111 000001111011 0011

« @Goals:

= Compact: use fewer bits

- Less memory has to be fetched to execute the program if each instruction is
short

= Easyto decode
« (In the subset of RISC-V we use) All instructions are the same length
— 32 bits
- To the extent possible, all instructions are represented in very similar ways
= Expressive
- Example: addi x3, x2, 10

— Instructions are only 32-bits, so there has to be some limit on the size of
the immediate operand

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw

GWIB54 S

RISC-V Instruction Encoding

+» More examples
" add x15,x14,x15 Ox00f707b3
= addi x8,x2,48 0x03010413
" |w x1,44(x2) 0x02c12083
" beq x14,x15, 0x3c Ox00f70a63

+» The machine instruction (32-bit string) must encode
registers, immediates, offsets, and the operation

+» There are only a few classes of instruction types, with
multiple operations in each class

= Example: add and or both take three register operands

WA UNIVERSITY of WASHINGTON Pa6gFreViRyq Fiw

RISC-V Instruction Encoding Classes

CORE INSTRUCTION FORMATS

31 27 26 25 24 20 19 15 14 12 11 7 6 0
R funct7 rs2 rsl funct3 rd Opcode
I imm|11:0] rsl funct3 rd Opcode
S imm|11:5] rs2 rsl funct3 imm|4:0] opcode
SB imm|[12{10:5] rs2 rs] funct3 mm[4:1|11] [opcode
U imm|31:12] rd opcode
UJ 1mm[20]10:1]11]19:12] rd opcode

The opcode field is in a fixed place, bits O through 6

From the opcode you can tell what the format of the
instruction is (R, I, S, etc.)

The opcode, plus sometimes the funct3 field, plus sometimes
the funct7 field, tell you what the specific operation is

" add - opcode: 0110011 funct3: 000 funct7: 0000000

" sub - opcode: 0110011 funct3: 000 funct7: 0100000

GWIB54 S

WA UNIVERSITY of WASHINGTON

P46 sFmreviRyqg £iw

Instruction classes

CORE INSTRUCTION FORMATS

31 27 26 25 24 20 19 15 14 12 11 7 6 0
R funct7 rs2 rsl funct3 rd Opcode
I imm[11:0] rsl funct3 rd Opcode
S imm(11:5] rs2 rsl funct3 imm|4:0] opcode
SB imm|[12{10:5] rs2 rsl funct3 mmm([4:1|11] | opcode
U imm|31:12] rd opcode
UJ imm[20(10:1]11|19:12] rd opcode

+» Rtype
" add, sub, sll, slt, sltu, xor, srl, sra, or, and,

« | type

= |w, Ib, addi, slli, slti, sltiu, xori, srli, srai, ori, andi

«» SB type

" beq, bne, blt, bge, bltu, bgeu

GWIB54 S5y

WA UNIVERSITY of WASHINGTON P46 FTeRyq Fiw

GWIB54 S5y

Example: R type

CORE INSTRUCTION FORMATS

31 27 26 25 24 20 19 15 14 12 11 7 6 0
R funct7 rs2 rsl funct3 rd Opcode
I imm|11:0] rsl funct3 rd Opcode
S imm|[11:5] rs2 rsl funct3 imm|[4:0] opcode
SB imm[12]10:5] rs2 rsl funct3 |[imm[4:1]11]| opcode
U imm|31:12] rd opcode
UJ imm[20(10:1]11|19:12] rd opcode

+» 0x00f707b3
= 00000000111101110000011110121 0011

= (0000000) (01111) (01110) (00O) (01111) (O11001171)
funct?7 rs2 rsl1 funct3 rd opcode
Xx15 x14 x15 add

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Actual RISC-V Memory Semantics

+» We’'ve been treating memory as “word addressable”

0

1 lw x2, 2(x0)
2

«» Memory is actually “byte addressable”
= A byte is 8 bits

0 lw x2, 8(x0)

WA UNIVERSITY of WASHINGTON

Actual Memory Semantics

« word
halfword
byte
double

+ loads and stores must be “aligned”

= for words, the effective address must be a multiple of 4

32
16

3
64

01ts
01ts
0its
01ts

P46 sFmreviRyqg £iw

W, SW
h, sh
b, sb
d, sd

= for halfwords, a multiple of two

" for bytes, any address is valid

®= for doubleword, a multiple of 8

» Why?

GWIB54 S

= simplifies many aspects of implementing the ISA in hardware

10

WA UNIVERSITY of WASHINGTON

P46 sFmreviRyqg £iw

Branch Encoding (SB class)

>

CORE INSTRUCTION FORMATS

31 27 26 25 24 20 19 15 14 12 11 7 6
R funct7 rs2 rsl funct3 rd Opcode
I imm|11:0] rsl funct3 rd Opcode
S imm|11:5] rs2 rsl funct3 imm|[4:0] opcode
SB imm|[12{10:5] rs2 rs] funct3 mm[4:1|11] [opcode
U imm|31:12] rd opcode
UJ 1mm[20]10:1]11]19:12] rd opcode

beq rsl, rs2, immed

immediate is stored in instruction in an odd way

high order bit of instruction is sign bit of immediate value

bits 30 through 25 are bits 10:5 of immediate, just like | format
bits 11 through 8 are bits 4:1 of immediate, just like | format
bit 0 isn’t stored, because it has to be 0 because of alignment

minimum instruction length in all RISC-V versions is 2 bytes

there’s no where else for bit 11 of the immediate to go than bit 7

GWIB54 S

11

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw

Branch Encoding

+» The SB encoding can
represent a 13 bit number

+ If taken as an unsigned
integer, the immediate can
range from O to 8191

+ |f the immediate is an
absolute address, branch
destination is very
restricted

bne x1, x2, label

8191

GWIB54 S

12

WA UNIVERSITY of WASHINGTON Pa6gFreViRyq Fiw

Branch Encoding: How to fix this

/
0‘0

0’0

0

Could make the immediate an

offset
Offset from what?

= Specify another register to use as
the base address

Example:
" bne x1, x2, off(x3)

Problems:

1. Need 5 bits to encode base
register in instruction
- offset would be only 8 bits

— 0-255
2. Have to set the base register

bne x1, x2, off(x3)

GWIB54 S

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

PC-Relative Branching

ldea: use the PC as the base register
" Target address = PC + offset

" Don’t have to specify a base register in the instruction
encoding (because the PC is always the base register)

" That gives you full 13 bits to hold the offset

= Might want branch forward in instruction stream, or might
want to branch back

- Make the offset a signed value
— -4096 to 4095

14

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

PC-Relative Branching

« Can branch back or
ahead up to about 1,000
instructions from where
you’re executing now

CI bne x1, x2, offset

15

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

The Simulator

S Sim --help

usage: CSE 410 RISC-V Simulator [-h] [-b] [-d] [-D <disassembler path>]
[-e ENTRYPOINT] [-0] [-p] [-t]
codefiles [codefiles ...]

optional arguments:

-h, --help show this help message and exit

-b, --byteaddressable
Force byte addressable operation

-d, --debugger Start execution in debugger

-D <disassembler path>
Path to C code disassembler executable

-e ENTRYPOINT, --entrypoint ENTRYPOINT
Start execution at entrypoint

-0, --objectcode Input files contains object code, rather than
assembler

-p, --pcrelative Force pc relative branch operation

-t, --trace Cause CPU to print instructions as executed

16

