WA UNIVERSITY of WASHINGTON

Operation of the Hardware:
State Machine

CSE 410 22wi
Lecture 03.5

WA UNIVERSITY of WASHINGTON Pa6gFreViRyq Fiw

GWIB54 S

Program vs. Instruction: Program

#define N 10

int main(int argc, char *argv[]) {
int i, val[N];
for (i=0; i<N; i++) val[i] = 2*val[i-1]+7;
sum = val[0];
for (i=1; i<N; i++) sum += valli];
printf("sum = %d\n", sum);

return O;

}

A program is a (complete)
set of instructions

The compiler can see them
all

The compiler can “reason”
about the full program

Can you spot a bug in this
program?

WA UNIVERSITY of WASHINGTON P46 el Ryq £iw GWIB54 s

Program vs. Instruction: Program

#define N 10
int main(int argc, char *argv[]) {
int i, val[N]; * In func{tlon’ main’:
e error: ‘sum’ undeclared
(first use in this function)
for (i=0; i<N; i++) val[i] = 2*val[i-1]+7; * sum =val[0];
° Ao
e :each undeclared
sum = val[Q]; identifier is reported only
once for each function it
appears in

for (i=1; i<N; i++) sum += valli];

printf("sum = %d\n", sum);
return O;

}

WA UNIVERSITY of WASHINGTON Pa6gFreViRyq Fiw

GWIB54 S

Program vs. Instruction: Program

#define N 10
int main(int argc, char *argv[]) {

int i, sum, val[N];

for (i=0; i<N; i++) val[i] = 2*val[i-1]+7;
sum = val[0];

for (i=1; i<N; i++) sum += val[i];
printf("sum = %d\n", sum);

return O;

}

There are limits to the
compiler’s ability to reason

Can you spot a bug in this
program?

* There are (at least) two
The (C) compiler doesn’t

WA UNIVERSITY of WASHINGTON Pa6gFreViRyq Fiw

GWIB54 S

Program vs. Instruction: Program

#tdefine N 10
int main(int argc, char *argv[]) {
int i, sum, val[N];

for (i=0; i<N; i++) val[i] = 2*val[i-1]+7;
sum = val[0];

for (i=1; i<N; i++) sum += valli];
printf("sum = %d\n", sum);

return O;

}

Compilers for other
languages might be able to
find this bug

WA/ UNIVERSITY of WASHINGTON P46 $F eV Ryq Fiw GWIB5A LS

Program vs. Instruction: Compiling

#define N 10 text

int main(int argc, char *argv[]) { main:

addi x2,x2,-80
sw x1,76(x2)
sw x8,72(x2)

int i, sum, val[N];

for (i=0; i<N; i++) val[i] = 2*val[i-1]+7; addi x8,x2,80
sw x10,-68(x8)

sum = val[0]; sw x11,-72(x8)
sw x0,-20(x8)

o , jal x0,.L2 # i .L2
for (i=1; i<N; i++) sum += val[i];

.L3:
lw a5,-20(x8)
printf("sum = %d\n", sum); addi a5,a5,-1
return O; slli~ a5,a5,2

} addi a4,x8,-16

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Hardware: Instruction Execution

« The hardware is a “state machine”

" |t (behaves as though) it executes a single instruction at a
time

®" The result of that execution depends only on the current
“state” of the machine

- The values of all registers, including the PC
- The values in memory

" The execution of an instruction doesn’t depend on

- instructions that were already executed (except for how they affected
the current state)

- what instructions will be executed in the future

W UNIVERSITY of WASHINGTON

Program vs. Instruction: Execution

CPU addi x2,x2,-80

Registers

PC

W UNIVERSITY of WASHINGTON P46 EFTe Ryq Fiw GWIB54 &8s

Program vs. Instruction: Execution

sw x1,76(x2)

Registers

XXXXXXXX

W UNIVERSITY of WASHINGTON P46 EFTe Ryq Fiw GWIB54 &8s

Program vs. Instruction: Execution

sw x8,72(x2)

Registers

XXXXXXXX

10

W UNIVERSITY of WASHINGTON P46 $FmreviRyq Fiw GWI854 LS

Program vs. Instruction: Execution

Registers addi x8,x2,80

XXXXXXXX

11

WA UNIVERSITY of WASHINGTON

P46 sFmreviRyqg £iw

GWIB54 S

Summary

+» “Programs” are a static construct

" Programmers, compilers, assemblers

+» Program execution is a dynamic construct

+» The hardware that performs the execution is a state
machine

" The idea of “program” is lost

= All that is happening is execution of one instruction followed
by execution of some next instruction

12

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Summary (cont.)

+» Because the compiler can see the complete program,
it might be able to detect errors that that won’t be
detected by the CPU

= Example: array indexing error is just a lw instruction

+ Because the hardware sees the dynamic state of the
program, it might be able to detect errors that are
hard or impossible to detect statically, by the
compiler

= Example: overflow

13

WA UNIVERSITY of WASHINGTON P46 el RYq Fiw GWIB54 &8s

Program vs. Instruction: Program

#define N 10
int main(int argc, char *argv([]) { “m
int i, sum, val[N]; 10 16,298
20 16,777,060
for (i=0; i<N; i++) val[i] = 2*val[i-1]+7; 30 -226
40 -296
sum = val[0];
for (i=1; i<N; i++) sum += vall[i]; The RISC-V processor does
not notice overflow. Some
. " _o " _ processors do, though. And
printf(*sum = %d\n", sum); the point is it could, because
return O; it sees the dynamic state of
) the program...

14

