Binary Representation

CSE 410 22wi
Lecture 03

Lecture Outline

+» Binary

+» Decimal, Binary, and Hexadecimal Integers
<~ Why Place Value Representation?

+ Floating Point Representation

+~ Character Representation

+ Pointer Representation

+ Array Representation

% Structure (Object) Representation

First: Why Binary?

+ Electronic implementation

" Easy to store

= Reliably transmitted on noisy and inaccurate wires

1

0
3.3V —
2.8V —
0.5V —
/—\,/_J
0.0V —

+» Other bases possible:

= Distinguish more voltage levels

/

7 N

= DNA data storage (base 4: A, C, G, T)

— () —

|

“binary” vs “digital”

Bit

>

+ A bit is a single binary value

0’0

“Binary” means there are (only) two distinct values

" in computers, high and low voltage

J
>

» We can map the two values to any other pair of
values

" Orange vs Apple; Up vs Down; 8 vs 10; Ovs 1; true vs false

+» Of these, the last two have many attractive properties

>

" 0and 1 - base-2 (binary) integers
" true and false - Boolean circuits

Bit (Logical) Operations

«» Unary operation
" not
e« V1 ==
° "’O::
«» Binary operations

" and
o O&O::

Operators are written as in C
(and many other languages)

Note that operator & is
different from operator &&

Bit Operations

+» Binary Operations

" or
0]0==

c 0| 1==
1]10==

e 111 ==

= xor (“exclusive or”)
- 0AQ==
- 0M1==1
- 170==1
e 1M1 ==

Bit Strings

+» A bit string is a concatentation of bits
" Example 01010111

+» Terminology:

CommonTerm | Usual#his
Byte 8
Word 32
Long word 64
Half-word 16

Nibble 4

Bit Strings: Logical Operations

+» The bit operators can be applied to bit strings

- 01010111
&11000110

01000110

= Similarly for |, A, and ~

Bit Strings: Shift Operations

« Left shift: <<

®" Throw away bits that spill off the string to the left
01010101<<1-== 6110101010
01010101<x<3==/03460410101000

+ Right shift logical: >>

= Shifts bits to the right, inserting 0’s from the left
11010101>>1==01101010H4
11010101>>3==00011010][101]

+ Right shift arithmetic: >> We’ll see why in a bit...

= Right shift arithmetic propagates the high order bit
« 01010101>>3==00001010
- 10101010>>3==11110101

Bit Masks: “and masks”

+» “and masks” turn off bits wherever the mask hasa 0
and copies bits wherever the mask hasa 1

= Examplemask: 00000001

- and’ed with another 8 bit string, it copies the low order bit of the
other string and sets everything else to zero
11111111
&00000001

00000001
- Other masks:
—00000011=>copytwo low order bits
—00001100=>copybits2and3
— etc.

10

Forcing bits on: “or masks”

« “or masks” turn on bits wherever the mask has a 1
and copy bits wherever it hasa O

" Examplemask: 00001001
10101010
|]00001001

10101011

11

Lecture Outline

+» Binary

+» Decimal, Binary, and Hexadecimal Integers
<~ Why Place Value Representation

+ Floating Point Representation

+» Character Representation

+ Pointer Representation

+ Array Representation

% Structure Representation

12

Integers and Integer Representations

+» What is 70617
" |t's a “place value” representation of an integer

= We could equally write
7*¥103+0*10%2+6 *101 +1*10°
but that’s a lot less convenient

+» What about 70000000000000000000061°7
" |t might be handier to write 7*10%% + 61

+» There is no “right representation” there are just ones
that are more convenient than others

13

Place value representation

+» We write n consecutive digits, numbering them O to

n-1 starting from the right. Place j has value b! for
some base b.

+» We write in each place a digit. There are b digits,

representing the numbers 0, 1, 2, ..., b-1.

d; 4 4 dg
B b2 b b

+» The place value string represents the integer

d _b"t+d b"™2+ .. +d,b°

14

Example: 1024,

2 b=10 (decimal)
" Digitsare0,1,2,3,4,5,6,7,8,9
® 1024 means 1*103+ 0 *102 + 2*10! + 4*100°

% b=2 (binary)
" Digitsare0, 1

= 10000000000 means 1*210 (plus a lot of “zero times x”
terms)

« Which is 1024,

15

Simplifying representations

+ Which is bigger, 231237943432586732275839,, or
23123794343584332235839,,7

+ We (humans) prefer representations with fewer digits

+» We can reduce the number of digits a factor of k by raising the
base by a power of k.
= E.g., instead of base 10, use base 1000

- Of course, we now need a 1000 different symbols for digits

» 231,237,943,432,586,732,275,839
versus
23,123,794,343,584,332,235,839

16

Simplifying binary

+ Start with (32-bit) binary representation:
00000001001000110100010101100111

% Octal: Raise the base by a power of 3 (so, base 8)
00 000 001 001 000 110 100 010 101 100 111
O 01 1 0 6 4 2 5 4 7

+» Hexadecimal (Hex): Raise the base by a power of 4
(base 16)
0000 0001 00100011 0100 0101 01100111
0 1 2 3 4 5 6 7

17

Hexadecimal

+» Grouping by four bits is handy

" Memories are always a multiple of 8 bits in length

» Hex digits: 0,1, 2,3,4,5,6,7,8,9,A,B,C,D,E,F

"= Correspond to valuesin base 100f0, 1, ...,9, 10, 11, 12, 13,
14, 15

= Case insensitive

+» Often (but not necessarily) written like OxOFC0138B
" 000011111100000000010011 10001011

18

Hex <~Binary

Hex Digit

Binary String

0

0000

N

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

MM OO0 |>lo|loo|lN|loojo|lM|lw]dD

1M1

What is OXFFFF in binary?

Is Ox237E even or odd?

We should specify what base
we’re using when writing integers.

In C:

e 123 is a decimal constant
(0123 is an octal constant
e (0X0123 is a hex constant

19

Lecture Outline

+» Binary
+» Decimal, Binary, and Hexadecimal Integers

< Why Place Value Representation
=" And why not
+ Floating Point Representation

+» Character Representation
+» Pointer Representation

<+ Array Representation

+ Structure Representation

20

Addition with Place Value Representations

+ Addition is easy with the standard algorithm (carry ripple)

1 1
0 0 1 0 2
0 1 1 1 7
1 0 0 1 9

+» One problem: what about addition of negative numbers?
24
+(-7

+» Another problem: Hey, what about negative numbers at all?

% Third problem: Overflow

21

Overflow

» A fixed amount of space is allocated for each value on a
computer
= For integers, usually 1, 2, 4, or 8 bytes (8, 16, 32, or 64 bits)

» Q. What if the result is too big to fit in that much space?
A: Too bad. The highest order bit is thrown away.

. That’s called overflow

O 0 -

O |+ O
=

o R w

1
0
1
0

22

Representing Signed Integers:
Two’s Complements

+» “Two’s complement” is a representation for positive
and negative integers

= Addition is always addition, even if one or both values are
negative

= About half the bit strings are negative and half are positive

ooo | 001 | 010 { 011 | 100 | 101 | 110 | 111

Verify that x + -x ==

Properties of Two’s Complement Integers

000 | 001 | 010 [011 |100| 101|110 | 111
signed | @ 1 2 | 3 |-4|-3|-2] -1
unsigned | Q 1 2 | 3| 4| 5 | 6 7

» If you count up from 0 by 1, you wrap from the largest positive
integer to the smallest negative integer

» |f the high order bitis 0, the number is non-negative.
If it’s 1, the number is negative.

» If the low order bit is O the number is even, otherwise it’s odd
= -X="X+1

= Example:-011=100+1=101
» There is one more negative value than positive values

= -<most negative int> = <most negative int>

24

Unsigned Integers

000 | 001 | 010 | 011 |100|101 | 110 | 111
signed 0 1 2 3 | -4 |-3] -2 -1
unsigned 0 1 2 3 4 5 6 7

« All values are non-negative

= About twice as many non-negative values can be represented compared
with signed

= Useful (in any case) for things like array indices (since they can’t sensibly
be negative)

= |f X is an unsigned integer, -X is a mistake

» You get the same bit string result adding bit strings as unsigned
values as you do adding them as signed lb

« |If the low order bit is 0 the number is even, otherwise it’s odd

25

Overflow

+ Overflow occurs when the result doesn’t fit in the
limited number of bits you have
" 0001+0111=>1000
1 + 7 = -8
" You can overflow when subtracting or multiplying as well

+» Unsignhed integers also overflow
= 0001+0111=1000
1 7 8 [no overflow]

= 0001+ 1111 =0000
1 15 0 [overflow]

26

Lecture Outline

+» Binary
+» Decimal, Binary, and Hexadecimal Integers

<~ Why Place Value Representation
" And why not
% Floating Point Representation

+» Character Representation
+» Pointer Representation

<+ Array Representation

+ Structure Representation

27

Floating Point Representation Overview

= We have only 32 bits, so we have only 232 different values we
can represent

» We're going to do the binary version of scientific notation:
2.357 x 10%4

= |f | had six decimal digits of space, | might write this as 142357

. Different choices for how to use the digits (bits) have different:

" range —roughly, how big the exponent can be
= precision — basically the number of significant digits in the fraction

28

32-bit Binary Floats

+» Called “single precision” floats
+» Value is [+/-] [fraction] x 2lexponent]

« The 32 bits are used as:

" High order bit is the sign of the value: 1 for negative, O for
non-negative

" The next 8 bits are the signed (two’s complement) value for
the exponent: 127 to-128

" The remaining 23 bits are the fraction
+» Range: approximately 2.0 x 103 to 2.0 x 1038
+» Numbers can overflow: exponent gets too big
+» Numbers can underflow: exponent gets too small

29

Lecture Outline

+» Binary
+» Decimal, Binary, and Hexadecimal Integers

<~ Why Place Value Representation
" And why not
+ Floating Point Representation

+» Character Representation
+» Pointer Representation

+ Array Representation

+ Structure Representation

30

Character Representation

+» We simply agree on a mapping from bit strings to characters
= “Everyone” knows what the mapping is

" The compiler inserts the agreed bit string when you write ‘A’
" The output system writes A when it sees that bit string

+» There is more than one agreed representation
« ASCII
" Historically the agreed mapping
= Fixed, 8-bit long strings
+» Unicode
= Variable length encoding: 8, 16, or 32 bits per character

= Many, many more bit strings, so many, many more characters/alphabets

31

ASCII

o~NOU A WNHO

O

<NUL>
<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<BEL>
<BS>
<TAB>
<LF>
<VT>
<FF>
<CR>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<DC4>
<NAK>
<SYN
<ETB>
<CAN>

<SUB>
<ESC>
<FS>
<GS>
<RS>
<US>

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

+ W =

O ONOOUTDA WNE O

A~

~ovol

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

> NXXs<CHUuIXOVOZIrXY"IOMmMOO®E>P

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Z‘W-‘—HHN(XE<C""U"“.D‘DO:$3_7_‘—"_'3'(.D—"‘(DQ.0UL\J

A
o]
m
-
v

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

M: M D) Qo ar Q: QO QW U C: O 2t My o

— —

C-Cs0t O O OF O T —F

C: >

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

—+

o

. g@@@ﬂ.hmlﬁ-ﬁ-

QRO OO IMIT KIVIAHK O R H#

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

-

A Do <

¥

8 @ O > >

MY oA MmN << O

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

y = C'C’C‘O“\ O,o‘n—c-n—c: —> = T M >\|-n,>

32

Character Strings

+» A string is an array of characters

S e a t t I e

+» Suppose memory had this. What is “the string”?

S e a t t I e W A

« Two common choices

7

S

e

a

t

\0

\0

33

Lecture Outline

+» Binary
+» Decimal, Binary, and Hexadecimal Integers

<~ Why Place Value Representation
" And why not
+ Floating Point Representation

+» Character Representation
% Pointer Representation

+ Array Representation

+ Structure Representation

34

Pointers (or Not Pointers?)
+ If you write this in some language

X =10;
Y=X; //IsYanewname for X, orisY aclone of X?
X =20;

what is the value of Y at this point?
" |f 10, then X and Y name different things

- Y is not a pointer (reference)
= |f 20, then Y is an alias for X (names the same thing)

- Yis a pointer (reference)

+ In Java, object variables are references

% In C, things aren’t pointers unless you go out of your
way to make them so

35

Pointers in C

« int x; //xnames 32-bits that we’ll use as an int

+« int *p; // p names a 32-bit string that can hold a
// memory address. We'll use the bit string
// at that address as an int

» p=&x; [//setp’s 32 bits to the address of x

» *p=4; [/ setsthe word of memory pointed at by p
// to4 (i.e., x=4)

36

C Language Pointers

Int Xx;
int *p;
p = &x;
*p=4;

lext

addi x2, x0, x
SW X2,p
addi x3, x0 4
sw X3, 0(x2)

.data

- .word 0

.word O

#x2 = &x
#p=8&x
#4

#*p=4

37

Lecture Outline

+» Binary
+» Decimal, Binary, and Hexadecimal Integers

<~ Why Place Value Representation
" And why not
+ Floating Point Representation

+» Character Representation
+» Pointer Representation

+ Array Representation

+ Structure Representation

38

Arrays

+ Arrays are just consecutive words of memory
®" The CPU doesn’t know anything about “arrays”

+» The array name is the base address of the array
+» The index is the offset from that base address

% int A[5]

A V

+3

Al3

+10

A[10]

Arrays

¢ int A[lO], text
» A[3] =4; addi x1,x0,4 #4
addi x2,x0, A # base address of A
SW x1, 3(x2) # store at A[3]
text
» int *pA = <something>; addi x1,x0,4
lw X2, <smthgn> # establish value for pA
» pA[3] = 4; ; P

SW x1, 3(x2) # store at A[3]

40

Lecture Outline

+» Binary
+» Decimal, Binary, and Hexadecimal Integers

<~ Why Place Value Representation
" And why not
+ Floating Point Representation

+» Character Representation
+» Pointer Representation

<+ Array Representation

+ Structure Representation

41

Structure Representation

+ struct person { This defines a type. It doesn’t allocate

. . memory.
Int Id; < “id” and “department” are offsets from
int department; the base of a struct person.

}; They have values 0 and 1 respectively.

p can “point to” memory used as a struct
person

A

struct person *p;

7
0’0

p->department = 10; addi x1, x0, 10
lw X2, p
sw x1, 1(x2) # “department” is an offset

It’s a similar idea for objects. They’re hunks of consecutive memory.
Field names are offsets into those hunks.

42

Lecture Outline

+» Binary
+» Decimal, Binary, and Hexadecimal Integers

<~ Why Place Value Representation
=" And why not

+ Floating Point Representation
+» Character Representation

+» Pointer Representation

<+ Array Representation

+ Structure Representation

% Strings

43

Summary

01100001

s its value as an (8 bit) int positive, negative, or zero?
Is its value as an int an even number?

What is its value as an int expressed in decimal?
What is its value as an int expressed in hex?

Might it be a float?

What is its value as a char?

Is it a C string?

Could it be the start of a C string?

Might it be an array?

Might it be a struct?

a4

