Binary Representation

CSE 410 22wi
Lecture 03
Lecture Outline

- Binary
- Decimal, Binary, and Hexadecimal Integers
- Why Place Value Representation?
- Floating Point Representation
- Character Representation
- Pointer Representation
- Array Representation
- Structure (Object) Representation
First: Why Binary?

- Electronic implementation
 - Easy to store
 - Reliably transmitted on noisy and inaccurate wires

- Other bases possible:
 - Distinguish more voltage levels
 - DNA data storage (base 4: A, C, G, T)

"binary" vs "digital"
Bit

- A bit is a single binary value
- “Binary” means there are (only) two distinct values
 - in computers, high and low voltage
- We can map the two values to any other pair of values
 - Orange vs Apple; Up vs Down; 8 vs 10; 0 vs 1; true vs false
- Of these, the last two have many attractive properties
 - 0 and 1 → base-2 (binary) integers
 - true and false → Boolean circuits
Bit (Logical) Operations

- **Unary operation**
 - not
 - \(\sim 1 = 0 \)
 - \(\sim 0 = 1 \)

- **Binary operations**
 - and
 - \(0 \& 0 = 0 \)
 - \(0 \& 1 = 0 \)
 - \(1 \& 0 = 0 \)
 - \(1 \& 1 = 1 \)

Operators are written as in C (and many other languages)

Note that operator \& is different from operator &&
Bit Operations

❖ Binary Operations

❖ or

• \(0 \mid 0 == 0 \)
• \(0 \mid 1 == 1 \)
• \(1 \mid 0 == 1 \)
• \(1 \mid 1 == 1 \)

❖ xor (“exclusive or”)

• \(0 ^ 0 == 0 \)
• \(0 ^ 1 == 1 \)
• \(1 ^ 0 == 1 \)
• \(1 ^ 1 == 0 \)
Bit Strings

- A bit string is a concatenation of bits
 - Example 01010111

- Terminology:

<table>
<thead>
<tr>
<th>Common Term</th>
<th>Usual #bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td>8</td>
</tr>
<tr>
<td>Word</td>
<td>32</td>
</tr>
<tr>
<td>Long word</td>
<td>64</td>
</tr>
<tr>
<td>Half-word</td>
<td>16</td>
</tr>
<tr>
<td>Nibble</td>
<td>4</td>
</tr>
</tbody>
</table>
Bit Strings: Logical Operations

- The bit operators can be applied to bit strings
 - \[\begin{array}{c}
 \text{01010111} \\
 \& \text{11000110} \\
 \end{array} \]

 \[\begin{array}{c}
 \text{01000110} \\
 \end{array} \]

- Similarly for |, ^, and ~
Bit Strings: Shift Operations

- **Left shift: <<**
 - Throw away bits that spill off the string to the left

 \[
 \begin{array}{c}
 01010101 \ll 1 = \textcolor{red}{[0]} 10101010 \\
 01010101 \ll 3 = \textcolor{red}{[010]} 10101000 \\
 \end{array}
 \]

- **Right shift logical: >>**
 - Shifts bits to the right, inserting 0’s from the left

 \[
 \begin{array}{c}
 11010101 \gg 1 = \textcolor{red}{[1]} 01101010 \\
 11010101 \gg 3 = \textcolor{red}{[101]} 00011010 \\
 \end{array}
 \]

- **Right shift arithmetic: >>**
 - Right shift arithmetic propagates the high order bit
 - \[01010101 \gg 3 = 00001010\]
 - \[10101010 \gg 3 = 11110101\]

 We’ll see why in a bit...
Bit Masks: “and masks”

- “and masks” turn off bits wherever the mask has a 0 and copies bits wherever the mask has a 1
 - Example mask: \[00000001\]
 - and’ed with another 8 bit string, it copies the low order bit of the other string and sets everything else to zero
 \[11111111\]
 \[00000001\]
 \[\text{----------------}\]
 \[00000001\]
 - Other masks:
 - \[00000011\] => copy two low order bits
 - \[00001100\] => copy bits 2 and 3
 - etc.
Forcing bits on: “or masks”

- “or masks” turn on bits wherever the mask has a 1 and copy bits wherever it has a 0
 - Example mask: 0 0 0 0 1 0 0 1
 1 0 1 0 1 0 1 0
0 0 0 0 1 0 0 1
 1 0 1 0 1 0 1 1
Lecture Outline

- Binary
- Decimal, Binary, and Hexadecimal Integers
- Why Place Value Representation
- Floating Point Representation
- Character Representation
- Pointer Representation
- Array Representation
- Structure Representation
Integers and Integer Representations

- What is 7061?
 - It’s a “place value” representation of an integer
 - We could equally write
 \[7 \times 10^3 + 0 \times 10^2 + 6 \times 10^1 + 1 \times 10^0 \]
 but that’s a lot less convenient

- What about 70000000000000000000061?
 - It might be handier to write \(7 \times 10^{22} + 61 \)

- There is no “right representation” there are just ones that are more convenient than others
Place value representation

- We write \(n \) consecutive digits, numbering them \(0 \) to \(n-1 \) starting from the right. Place \(j \) has value \(b^j \) for some base \(b \).

- We write in each place a *digit*. There are \(b \) digits, representing the numbers \(0, 1, 2, \ldots, b-1 \).

\[
\begin{array}{cccc}
 d_3 & d_2 & d_1 & d_0 \\
 b^3 & b^2 & b^1 & b^0 \\
\end{array}
\]

- The place value string represents the integer

\[
d_{n-1}b^{n-1} + d_{n-2}b^{n-2} + \ldots + d_0b^0
\]
Example: 1024_{10}

- $b=10$ (decimal)
 - Digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - 1024 means $1 \times 10^3 + 0 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$

- $b=2$ (binary)
 - Digits are 0, 1
 - 10000000000 means 1×2^{10} (plus a lot of “zero times x” terms)
 - Which is 1024_{10}
Simplifying representations

- Which is bigger, 231237943432586732275839₁₀ or 23123794343584332235839₁₀?

- We (humans) prefer representations with fewer digits
- We can reduce the number of digits a factor of k by raising the base by a power of k.
 - E.g., instead of base 10, use base 1000
 - Of course, we now need a 1000 different symbols for digits

- 231,237,943,432,586,732,275,839 versus 23,123,794,343,584,332,235,839
Simplifying binary

- Start with (32-bit) binary representation:
 00000001001000110100010101100111

- **Octal**: Raise the base by a power of 3 (so, base 8)
 00 000 001 001 000 110 100 010 101 100 111
 0 0 1 1 0 6 4 2 5 4 7

- **Hexadecimal (Hex)**: Raise the base by a power of 4 (base 16)
 0000 0001 0010 0011 0100 0101 0110 0111
 0 1 2 3 4 5 6 7
Hexadecimal

- Grouping by four bits is handy
 - Memories are always a multiple of 8 bits in length

- Hex digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Correspond to values in base 10 of 0, 1, ..., 9, 10, 11, 12, 13, 14, 15
 - Case insensitive

- Often (but not necessarily) written like 0x0FC0138B
 - 0000 1111 1100 0000 0001 0011 1000 1011
Hex ↔ Binary

<table>
<thead>
<tr>
<th>Hex Digit</th>
<th>Binary String</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>

What is 0xFFFF in binary?

Is 0x237E even or odd?

We should specify what base we’re using when writing integers.

In C:
- 123 is a decimal constant
- 0123 is an octal constant
- 0X0123 is a hex constant
Lecture Outline

- Binary
- Decimal, Binary, and Hexadecimal Integers
- Why Place Value Representation
 - And why not
- Floating Point Representation
- Character Representation
- Pointer Representation
- Array Representation
- Structure Representation
Addition with Place Value Representations

- Addition is **easy** with the standard algorithm (carry ripple)

```
  1
+0 0 1 0
+0 1 1 1
  1 0 0 1
  2 7 9
```

- **One problem:** what about addition of negative numbers?

```
  24
+(-7)
```

- **Another problem:** **Hey, what about negative numbers at all?**

- **Third problem:** **Overflow**
Overflow

- A fixed amount of space is allocated for each value on a computer
 - For integers, usually 1, 2, 4, or 8 bytes (8, 16, 32, or 64 bits)

- **Q:** What if the result is too big to fit in that much space?
 - **A:** Too bad. The highest order bit is thrown away.

- That’s called **overflow**

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 5 \\
1 & 0 & 1 & 1 & 11 \\
\hline
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
Representing Signed Integers: Two’s Complements

“Two’s complement” is a representation for positive and negative integers

- Addition is always addition, even if one or both values are negative
- About half the bit strings are negative and half are positive

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>

Verify that $x + -x == 0$
Properties of Two’s Complement Integers

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>signed</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>unsigned</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

- If you count up from 0 by 1, you *wrap* from the largest positive integer to the smallest negative integer.
- If the high order bit is 0, the number is non-negative. If it’s 1, the number is negative.
- If the low order bit is 0 the number is even, otherwise it’s odd.
- \(-X = \sim X + 1\)
 - Example: \(-011 = 100 + 1 = 101\)
- There is one more negative value than positive values
 - \(-<\text{most negative int}> = <\text{most negative int}>\)
Unsigned Integers

<table>
<thead>
<tr>
<th>signed</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>unsigned</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

- All values are non-negative
 - About twice as many non-negative values can be represented compared with signed
 - Useful (in any case) for things like array indices (since they can’t sensibly be negative)
 - If X is an unsigned integer, -X is a mistake

- You get the same bit string result adding bit strings as unsigned values as you do adding them as signed

- If the low order bit is 0 the number is even, otherwise it’s odd
Overflow

Overflow occurs when the result doesn’t fit in the limited number of bits you have

- 0001 + 0111 => 1000
 1 + 7 = -8

- You can overflow when subtracting or multiplying as well

Unsigned integers also overflow

- 0001 + 0111 = 1000
 1 7 8 [no overflow]

- 0001 + 1111 = 0000
 1 15 0 [overflow]
Lecture Outline

- Binary
- Decimal, Binary, and Hexadecimal Integers
- Why Place Value Representation
 - And why not
- Floating Point Representation
- Character Representation
- Pointer Representation
- Array Representation
- Structure Representation
Floating Point Representation Overview

- We have only 32 bits, so we have only 2^{32} different values we can represent.

- We’re going to do the binary version of scientific notation: 2.357×10^{14}
 - If I had six decimal digits of space, I might write this as 142357.

- Different choices for how to use the digits (bits) have different:
 - range – roughly, how big the exponent can be
 - precision – basically the number of significant digits in the fraction
32-bit Binary Floats

- Called “single precision” floats
- Value is \([+/-] \text{[fraction]} \times 2^{\text{exponent}}\)
- The 32 bits are used as:
 - High order bit is the sign of the value: 1 for negative, 0 for non-negative
 - The next 8 bits are the signed (two’s complement) value for the exponent: 127 to -128
 - The remaining 23 bits are the fraction
- Range: approximately \(2.0 \times 10^{38}\) to \(2.0 \times 10^{-38}\)
- Numbers can overflow: exponent gets too big
- Numbers can underflow: exponent gets too small
Lecture Outline

- Binary
- Decimal, Binary, and Hexadecimal Integers
- Why Place Value Representation
 - And why not
- Floating Point Representation
- Character Representation
- Pointer Representation
- Array Representation
- Structure Representation
Character Representation

- We simply agree on a mapping from bit strings to characters
 - “Everyone” knows what the mapping is
 - The compiler inserts the agreed bit string when you write ‘A’
 - The output system writes A when it sees that bit string

- There is more than one agreed representation
 - ASCII
 - Historically the agreed mapping
 - Fixed, 8-bit long strings
 - Unicode
 - Variable length encoding: 8, 16, or 32 bits per character
 - Many, many more bit strings, so many, many more characters/alphabets
<table>
<thead>
<tr>
<th>ASCII Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><NUL></td>
</tr>
<tr>
<td>1</td>
<td><SOH></td>
</tr>
<tr>
<td>2</td>
<td><STX></td>
</tr>
<tr>
<td>3</td>
<td><ETX></td>
</tr>
<tr>
<td>4</td>
<td><EOT></td>
</tr>
<tr>
<td>5</td>
<td><ENQ></td>
</tr>
<tr>
<td>6</td>
<td><ACK></td>
</tr>
<tr>
<td>7</td>
<td><BEL></td>
</tr>
<tr>
<td>8</td>
<td><BS></td>
</tr>
<tr>
<td>9</td>
<td><TAB></td>
</tr>
<tr>
<td>10</td>
<td><LF></td>
</tr>
<tr>
<td>11</td>
<td><VT></td>
</tr>
<tr>
<td>12</td>
<td><FF></td>
</tr>
<tr>
<td>13</td>
<td><CR></td>
</tr>
<tr>
<td>14</td>
<td><SO></td>
</tr>
<tr>
<td>15</td>
<td><SI></td>
</tr>
<tr>
<td>16</td>
<td><DLE></td>
</tr>
<tr>
<td>17</td>
<td><DC1></td>
</tr>
<tr>
<td>18</td>
<td><DC2></td>
</tr>
<tr>
<td>19</td>
<td><DC3></td>
</tr>
<tr>
<td>20</td>
<td><DC4></td>
</tr>
<tr>
<td>21</td>
<td><NAK></td>
</tr>
<tr>
<td>22</td>
<td><SYN></td>
</tr>
<tr>
<td>23</td>
<td><ETB></td>
</tr>
<tr>
<td>24</td>
<td><CAN></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td><SUB></td>
</tr>
<tr>
<td>27</td>
<td><ESC></td>
</tr>
<tr>
<td>28</td>
<td><FS></td>
</tr>
<tr>
<td>29</td>
<td><GS></td>
</tr>
<tr>
<td>30</td>
<td><RS></td>
</tr>
<tr>
<td>31</td>
<td><US></td>
</tr>
</tbody>
</table>
Character Strings

- A string is an array of characters

```
Seattle
```

- Suppose memory had this. What is “the string”?

```
Seattle
```

- Two common choices

```
7 Seattle 2 WA
```

```
Seattle \0 WA \0
```
Lecture Outline

- Binary
- Decimal, Binary, and Hexadecimal Integers
- Why Place Value Representation
 - And why not
- Floating Point Representation
- Character Representation
- Pointer Representation
- Array Representation
- Structure Representation
Pointers (or Not Pointers?)

- If you write this in some language

  ```
  X = 10;
  Y = X;  // Is Y a new name for X, or is Y a clone of X?
  X = 20;
  ```

 what is the value of Y at this point?

 - If 10, then X and Y name different things
 - Y is not a pointer (reference)
 - If 20, then Y is an alias for X (names the same thing)
 - Y is a pointer (reference)

- In Java, object variables are **references**

- In C, things aren’t pointers unless you go out of your way to make them so
Pointers in C

- `int x;` // `x` names 32-bits that we’ll use as an int

- `int *p;` // `p` names a 32-bit string that can hold a
 // memory address. We’ll use the bit string
 // at that address as an int

- `p = &x;` // set `p`’s 32 bits to the address of `x`

- `*p = 4;` // sets the word of memory pointed at by `p`
 // to 4 (i.e., `x = 4`)
C Language Pointers

```c
int x;
int *p;
p = &x;
*p = 4;
```

```assembly
.text
addi x2, x0, x  # x2 = &x
sw x2, p  # p = &x
addi x3, x0, 4  # 4
sw x3, 0(x2)  # *p = 4

.data
...
x: .word 0
...
p: .word 0
```
Lecture Outline

- Binary
- Decimal, Binary, and Hexadecimal Integers
- Why Place Value Representation
 - And why not
- Floating Point Representation
- Character Representation
- Pointer Representation
- Array Representation
- Structure Representation
Arrays

- Arrays are just consecutive words of memory
 - The CPU doesn’t know anything about “arrays”
- The array name is the base address of the array
- The index is the offset from that base address

Arrays

- `int A[10];`
- `int *pA = <something>;`

```
.text
addi x1, x0, 4       # 4
addi x2, x0, A       # base address of A
sw   x1, 3(x2)       # store at A[3]

.text
addi x1, x0, 4
lw   x2, <smthgn>   # establish value for pA
sw   x1, 3(x2)      # store at A[3]
```
Lecture Outline

- Binary
- Decimal, Binary, and Hexadecimal Integers
- Why Place Value Representation
 - And why not
- Floating Point Representation
- Character Representation
- Pointer Representation
- Array Representation
- Structure Representation
Structure Representation

- struct person {
 int id;
 int department;
};
- struct person *p;
- ...
- p->department = 10;

This defines a type. It doesn’t allocate memory.
“id” and “department” are offsets from the base of a struct person.
They have values 0 and 1 respectively.

p can “point to” memory used as a struct person

It’s a similar idea for objects. They’re hunks of consecutive memory.
Field names are offsets into those hunks.
Lecture Outline

- Binary
- Decimal, Binary, and Hexadecimal Integers
- Why Place Value Representation
 - And why not
- Floating Point Representation
- Character Representation
- Pointer Representation
- Array Representation
- Structure Representation
- Strings
Summary

• 01100001
 • Is its value as an (8 bit) int positive, negative, or zero?
 • Is its value as an int an even number?
 • What is its value as an int expressed in decimal?
 • What is its value as an int expressed in hex?
 • Might it be a float?
 • What is its value as a char?
 • Is it a C string?
 • Could it be the start of a C string?
 • Might it be an array?
 • Might it be a struct?