University of Washington

Computer Systems
CSE 410 Winter 2022

RISC-V Instruction Set Architecture (ISA)

University of Washington

Today’s Lecture Guide

l. RISC-V Instruction Set Architecture (ISA): Resources
II. RISC-V ISA: Instructions
Ill. The Assembler

I\V. The CSE 410 Simulator

University of Washington

. RISC-V ISA: Resources

software
Instruction Set Architecture (ISA) 4

I

hardware

University of Washington

Instruction Set Architecture (ISA)

m An ISAis an abstract interface
= |t’s not an implementation

= Allows executables to be portable across processor models

m The ISA defines the set of resources available, the set of
operations available, and what you have to do to make use of
those resources and operations

m We'll be talking about RISC-V, but other architectures look very
similar, at least for the purposes of this class
= Roughly same resources

= Roughly same operations

The Context

m There’s the full RISC-V ISA

= |t's defined in the spec (risc-v.org), but has way more in it than is
needed in this course

= RISC-V itself isn’t one ISA, it’s a family

— For instance, there are 32-bit ISA specs, and 64-bit and 128-bit
(What does that mean?)

m There’s the subset of the RISC-V ISA that we will eventually

cover

= |t is basically the user-level (not instructions intended for the OS to
use), integer (not float) instructions

= We're leaving out instructions even from that subset to help simplify
= Nothing essential is missing, though
® Qur subset is from RV32

University of Washington

The Context (cont.)

m We'll be using a set of recently written tools for programming
on the RISC-V ISA

m Why?
= The tools simplify the architecture even more than just subsetting RV32
= Basically, they let you program while thinking in decimal

— (“Real programmers use hexadecimal”)
— (We'll get to that in a while...)

m So, the way our simulated machine works in hw1 differs from
what you’ll read about RISC-V online

m The goal of the simplification is that you shouldn’t have to read
(much) beyond the hw writeup for hwl

m For the rest of these slides, when | say RISC-V | mean the
version implemented in our tools for hwl

RISC-V Resources

CPU
(Central Processing Unit)

(Main) Memory
(RAM (random access memory))

Registers

PC
(program counter)

Memory bus

University of Washington

CPU

Hardware Packaging

University of Washington

Hardware Packaging: CPU

| System-||
Agent'aa|

' Processor [T i a8 [T e SR P | Memotyl

Controllef|

including

1 Graphics & ==
- | Display;

gl gafg o 25 Lol DMl and
- 7 \EHEL T BT e L Misc; I70

University of Washington

Hardware Packaging: CPU

29,000 » Transistors * BILLIONS
3 MICRON NMOS PROCESS (s00014) = Manufacturing -» 14 NM CMOS PROCESS
G‘”HEMMM. > Lithography . ARGON HUEHI!]EEKHHERUSR
436NM WAVELENGTH 193NM WAVELENGTH
BMM » Die Size + >100 MM

3.2 MICRONS (z200m4) Min Feature Size o SNM
HMHZ (0.00s6H7) *—— Max Frequency ——o H6HZ
0.33MIPS « Performance + >100,000 MIPS
4 INCHES = Wafer Diameter + 12 INCHES
$86 (5330 AJUSTED FOR INFLATION) Price » $425 MSRP

https://www.leqgitreviews.com/intel-core-i7-8086k-processor-review 206547

10

University of Washington

Hardware Packaging: RAM

WARRANTY VOID IF EMOVED
N E M IX ML21300-944

M 64GB DDR4 2666MHz
PC4-21300 LRDIMM

11

Hardware Packaging: Motherboard

CPU socket: 8-pin CPU Memory slots: quad
Memory slots: quad sTRX4 power connectors channel DDR4 4400
channel DDR4 4400 (O.C.)/ 4266(0.C.)/

(0.C.)/ 4266(0.C.)/
4133(0.C.)/ 4000
(O.C.)/ 3866(0.C.)/
3733(0.C.)/ 3600
(0.C.)/ 3466(0.C.)/
3400(0.C.)/ 3333

4133(0.C.)/ 4000
(0.C.)/ 3866(0.C.)/
3733(0.C.)/ 3600
(0.C.)/ 3466(0.C.)/
3400(0.C.)/ 3333
(0.C.)/ 3300(0.C.)/

(O.C.)/ 3300(0.C.) 3200/ 2933/ 2667/
gigg? %?ggl 2667/ 2400/ 2133
24-pin ATX
power
connector
Chipset:
AMD
TRX40
M.2 slot =
§
7 o SATA
" o Ebarai. | T AN : connectors:
PCIl Express .LT: 6Gbls
4.0 x1 slot '
M.2 slot b2t

PCI Express
4.0 x16 slots

12

RISC-V (RV32i) ISA

m Each register can hold a Java integer

m Each unit of memory can hold a Java integer

= We call a unit of memory a “word”

m You know from 142/143 that there is a limited range of
integers that a Java int can hold
= _2,147,483,648 to 2,147,483,647

m Why?

13

RISC-V (RV32i) Resources

CPU
(Central Processing Unit)

(Main) Memory
(RAM (random access memory))

Registers

PC
(program counter)

Memory bus

01010101010101010101010101010101

Each register/word of memory is 32-bits wide

14

Binary integer preview

m Why is the range of integers a 32-bit int can hold limited?

" Let’s answer that using 3-bit integers as an example
m If each register/word were 3 bits wide, each could hold any of

8 different bit patterns
= 000,001, 010,011,100, 101, 110,111

m So, the register/word can hold only 8 different integer values
" What values should they be?

15

University of Washington

Possible bit string to integer mappings
| BitString | OptionA | OptionB | OptionC_| OptionD _
000 1 3 0 0

001 10 -17 1 1
010 100 6,513,201 2 2
011 1,000 8 3 3
100 10,000 -2 4 -4
101 100,000 12 5 -3
110 1,000,000 10 6 -2
111 10,000,000 6 7 -1

Option D is called “two’s complement representation”
and corresponds to the Java int’s you're used to

Option C is called “unsigned int”

Option A is related to floats. Option B is silly. (Why?)

16

University of Washington

(Sim) RISC-V Resources: Naming

(Main) Memory

CPU (RAM (random access memory))

(Central Processing Unit) 0

1

2

Registers 3

0 PC 4
1 (program counter) 3}
2 6

-
; 7
5 Memory bus 8
6

; 9
: 10
11
12
There are actually 32 registers. 13

The amount of memory is system dependent.

17

(Sim) RISC-V Resources: Naming

(Main) Memory

CPU
(Central Processing Unit)

Registers

PC
(program counter)

Memory bus

oo N OO O WD —-~O

PO Ao ©WooNO A WN O

Example Instruction:
‘Add register 3 to register 4 and put the result in register 3”

18

(Sim) RISC-V Resources: Naming

(Main) Memory

CPU
(Central Processing Unit)

Registers

PC
(program counter)

Memory bus

oo N OO O WD —-~O

PO Ao ©WooNO A WN O

Example Instruction:
“Copy the bits in memory location 10 to register 7”
(not a real instruction)

19

(Sim) RISC-V Resources: Addressing

(Main) Memory

CPU
(Central Processing Unit)

Registers

PC
(program counter)

Memory bus

oo N OO O WD —-~O

PO Ao ©WooNO A WN O

Example Instruction:
“Copy the bits in the memory location whose address is

in reqister 3 to register 77

20

University of Washington

Pointers
(Main) Memory

CPU
(Central Processing Unit)

Registers

PC
(program counter)

Memory bus

“Pointer”

—_— e o
—
—
—

—
—
_--———

Registers are used to name words of memory.
Registers can hold only about 4B different names =>
The processor can't use memory bigger than about 4 giga-words

21

University of Washington

RISC-V Resources Summary

m 32 registers
" Named by the hardware as 0, 1, 2, ..., 31
= Register 0 is always 0

= if you read its value, you get O
= if you write any value toit, it stays O
= Register contents can be used as pointers to name memory locations

m Some number of words of memory

m A program counter (PC)

"= The PCis a pointer to (names) a memory location

® That location is the next instruction to be executed

22

University of Washington

Il. RISC-V ISA: Instructions

23

University of Washington

Everything is a Bit String

m Registers and memory hold bit strings
m The hardware manipulates bit strings

= At run time, everything is bits

m Layers above map bit strings to other sorts of data
= Layers:
= Some software package
= The compiler
= The assembler
= The programmer
= QOther sorts of data:
= Colors (Red: 00, Blue: 01, Green: 10)
= Animals (Dog: 00, Cat: 01, Rat: 10, Squirrel: 11)
= Boolean (False: O, True: 1)

24

University of Washington

An Executable’s Instructions are Bit Strings

m When a program runs, its instructions are stored in memory

m Example:

= (00000000111101110000011110110011
means
add the contents of registers 14 and 15 and put the result in register 15

m The hardware directly executes these bit strings, which are called machine
instructions

m Machine instructions have
= An op(eration) code —e.g., add

= (QOperands —e.g., registers 3 and 4

m The special program counter (PC) register in the CPU is a pointer to
(holds the address of) the next instruction to execute

25

University of Washington

Operation of the CPU / Control Flow

m Basic operation of the CPU: fetch-increment-execute
= Fetch the instruction memory pointed to by the program counter (PC)
= PC< PC+1
= Execute the instruction just fetched
= Repeat (forever)

m Note that instructions are usually executed sequentially
= |nstruction at location 113, 114, 115, 1186, ...

m A “branch instruction” is a (conditional) assignment to the PC

= Executing instructions at location 113, 114, 210, 211, ...
= The instruction at 114 was a branch

= (Terminology: “branch” is conditional on some test; “jump” is unconditional)

26

University of Washington

Simple Example Assembly Program

text
int X=1;
W x1, X int Y=2,
lw x2, Y _ ,
add X2, x1, x2 :?l; ﬁ% ; >0()+2/’
bge x2, X0, else //then
... //then }else {
j done //isneg
else: ... // else }
done: sw x2,7 £~ temp;
.data
X: .word 1
Y: .word 2

Z: word O

27

University of Washington

RISC-V Instructions

m RISCis Reduced Instruction Set Computer

" |t’s contrasted with CISC, Complex Instruction Set Computer

m RISC is designed to allow extremely fast implementations of
the ISA

= Fast comes from regularity and simplicity
= “Simpler is faster”

m Instruction types:

= A) Memory operations: move values between registers and memory

= B) Reg-Reg operations: perform an operation on register values and
store result in a register

= C) Control Flow (branches): compare two registers and if result is True,
assign a value to PC

28

University of Washington

A) Memory Operations: Summary

m Load moves data from memory into a register
m Store moves data from a register into memory

m Assembler Format:
" |w rd, imm(rsl) #rd &<memory[imm+[rsl]]
" Ssw rs2, imm(rsl) # memory[imm+[rsl1]] ¢ [rs2]

University of Washington

Memory Operations: Load

17

Example: load word

lw x5, 4(x3) # load into register 5 the word in
memory at location given by
adding 4 to the contents of reg 3

PP OWoONO R WN O

30

University of Washington

Base-Displacement Addressing Mode

lw x5, 4(x3) # load into register 5 the word in memory at location
given by adding 4 to the contents of reg 3

m An “addressing mode” is a scheme to create a memory address

m Base-displacement adds a constant (given in the instruction) to
the contents of a register

m The register is called “the base register” because typically it
points to the base of some data structure

m Example: x3 holds the address of the zero-th word of array A.
Then 4(x3) names A[4].

31

University of Washington

Memory Operations: Store

PP OWoONO R WN O

sw x5, 3(x3) # store the contents of reg 5
memory at location given by
adding 3 to the contents of reg 3

32

University of Washington

B) Register Operations: Summary

m op rd,rsl,rs2
= [rd] & [rs1] op [rs2]

= The contents of register rd are replaced with the value obtained by
performing the operation on the contents of registers rs1 and rs2

m Example arithmetric instructions

= add x3,x1,x2 # x3=[x1]+ [x2]
sub x3,x1,x2 # x3=[x1]-[x2]
and x3,x1,x2 # x3=[x1] & [x2]
or x3,x1,x2 #x3=[x1]]| [x2]
xor x3,x1,x2 #x3=[x1]"[x2]
sl x3,x1,x2 #x3=[x1] << [x2]
sra x3,x1,x2 #x3=[x1]>>[x2]

33

University of Washington

Immediate Instructions: Summary

m An “immediate” is a (small) value stored in the instruction itself
= Remember, instructions are bit strings stored in memory

= “Big values” are too big to store in the instruction, and so must be put
in memory and loaded into registers when you want to use them

m op rd,rsl,immed
" [rd] & [rs1] op immed

= The contents of register rd are replaced with the value obtained by
performing the operation on the contents of registers rs1 and the
immediate value

34

University of Washington

Immediate Instructions: Examples

m Example immediate instructions

= addi x3,x1,1 # x3=x1+1
addi x3,x1,-1 # x3=x1-1

= andi x3,x1,1 # x3=x1&1
= ori x3,x1,1 #x3=x1]1
" srai x3,x1,1 H x3=x1>>1

35

University of Washington

C) Control Flow (branch instructions): Summary

m blt x1, x2, 20 #if [x1] < [x2], PC & 20
bge x1,x2,10 #if [x1] > [x2], PC & 10
beq x1,x2,21002 # branch if [x1] == [x2]
bne x1,x2,104 # branch if [x1] != [x2]

m Reminder: [x0] ==
It’s always 0, even if some program tries to assign to it.

m The assembler supports some “pseudo-instructions”
" beqgz x1, 20 # branch if [x1] ==0

N2
beq x1,x0,20 # branch if [x1]==

36

University of Washington

Control Flow (branch instructions)

O blt x1, x2,20 #if [x1] < [x2], PC & 20
bge x1,x2, loop #if [x1] > [x2], PC gets the location
with label loop
beq x1, x2, done
bne x1, x2, start
done: # example of a label

Note: These are instructions written in a format the assembler understands. To the
assembler, a label is basically a symbolic constant whose value is the memory
location the label names. So, if loop names memory location 12, the second
instruction is equivalent to bge x1, x2, 12

37

University of Washington

lll. The Assembler

38

University of Washington

An Executable’s Instructions are Bit Strings

Program
Source

\ 4

Binary

Compiler |— > :
Instructions

Assembler

Assembler: generally translates a single assembly language instruction (written as characters)
into a single machine instruction (a bit string).

Compiler: generally translates source language instructions into sequences of assembly
language instructions and does type checking.

39

University of Washington

Assembly Language Instructions

m Format: [label:] opcode operands

m Examples:
Iw x9, 0(x3)
beqz x9, skip
addi x9, x9, -1
SW x9, 0(x3)

skip:

40

University of Washington

The Assembler: Labels

m Labels are assembler-supported symbolic names for
instruction addresses

Iw x9, 0(x3)
beqz x9, skip

addi X9, x9, -1
SW x9, 0(x3)

skip:

m If these instructions are stored starting at address O, the value
of the symbol “skip” is 4

= Relieves programmer of burden of calculating addresses when writing
branches

= Assembler program remains correct even if a new instruction is
inserted into the sequence

= (A new instruction changes the addresses of all following instructions)

41

University of Washington

Assembler Pseudo-Instructions

The assembler allows the user to write instructions that aren't
directly supported by the CPU, because they can be easily
expressed as instructions that are supported.

m bgt x1,x2, loop isjustbltx2, x1, loop

m ble x1,x2,loop is bge x2, x1, loop

m mov x1, x2 iS addi x1, x2, 0

B NOp (no op(eration)) is addi x1, x0, O

m neg x1,x2 iS sub x1, x0, x2

m beqz x1, address is beq x1, x0, address
O

j jump) loop is beq x0, x0, loop

(Note: this isn’t the translation actually used for j, but it’s correct)

42

University of Washington

Example Assembler Program: hw0.asm

text
main:
lw X5, X section directives
Iw X6, y
add x5, x5, x6
lw X6, z
labels add x5, X5, X
print X5
halt # all done
.data \ comment
X .word 1
y .word

43

University of Washington

Assembler File Sections

m Overview

= text means that what follows are instructions intended to be executed,
not data

= data means what follows is data, not instructions

m .data Section
.word 3 means that a word of memory should be initialized
(before the program starts running) with the value 3

44

University of Washington

Labels for Data

m Remember that load and store operations need to compute
the location in memory that will be operated on
= E.g., 4(x3) means 4 + [x3]
" The computed location is called “the effective address”
® This style of addressing is called “base displacement”

m Itis unwieldy for humans (especially) to deal with addresses
" |fyou insert or delete a variable, they all change

m Labels are a convenience, provided by the assembler

" The assembler keeps track of the lines of code and words of data it has

seen so far, and when it sees a label it remembers the location that was
labelled

45

University of Washington

Labels

text Label “main” means location 0 in the text
main: <« segment

lw x5, X

lw X6, y

add X5, x5, x6

Iw X6, z

add x5, x5, x6

print X5

halt # all done

.data

Labels x, y, and z means locations 0, 1, and

X: .word -— 2 in the data segment

y: .word
z: .word

46

IV. The CSE 410 Simulator

University of Washington

Why Our Own Simulator?

m There are many RISC-V tool kits
m There are even RISC-V processors

m Our simulator is a simplified RISC-V ISA:

" The essential functionality of RISC-V RV32i without a lot of distracting
details

" The essential RISC ideas without...
m Makes it possible to actually do a small implementation

without requiring weeks of instruction
= | hope!

48

University of Washington

Instructions Supported by the HW1
Simulator

m RISC-V RV32 Instructions
= add, sub, addi, lw, sw, blt, bge, beq, bne

m Made up instructions
For simplicity, the CSE 410 simulator invents a couple instructions that real
processors don’t have

" halt # stop execution
= print x5 # print [x5] to the console

49

University of Washington

Example program: hw0.asm

In this example, execution
starts at location 0 in the text
section

x5, x5, x6

W X6,z In the future, execution of your
add x5, x5, x6 code will start at label main
print x5

50

University of Washington

Running the Simulator

m S SimhwO0.asm

Runs hw0.asm. When execution halts, the CPU state (PC and register values) and
memory state (contents) are printed. Values of O are largely elided.

$ Sim hw0.asm

6

Cycle: 7

7 instructions executed
PC=7

[reg:x0] 0

[reg:x2] 524288
[reg:x3] 0

[reg:xd] 6
[reg:x6] 3
[reg:x7] 0

[reg:x31] 0
[mem:0] 1
[mem:1] 2
[mem:2] 3

51

University of Washington

Running the sim debugger

S Sim -d hw0.asm
Welcome to the Sim410 debugger. Type help or ? to list commands.

(pc: 0 cycle: 0) ?

Documented commands (type help <topic>):

EOF dcpu dinstructions dmemory dregs help run step

(pc: 0 cycle: 0) help step
Execute one instruction
(pc: 0 cycle: 0) step
[hwO0.asm: 2] Iw x5, X
(pc: 1 cycle: 1) dregs
[reg:x0] O

[reg:x2] 524288
[reg:x3] 0

[reg:x5] 1
[reg:x6] O

[.r.(.ag:x31] 0)
(pc: 1 cycle: 1) Type ctrl-d to exit

52

University of Washington

Just run, but show instructions executed

S Sim -t hw0.asm

[hwO0.asm: 2] Iw x5, x
[hwO0.asm: 3] Iw x6,y
[hwO0.asm: 4] add x5, x5, x6
[hwO0.asm: 5] Iw x6, z
[hwO0.asm: 6] add x5, x5, x6
[hwO0.asm: 7] print x5

6

[hwO0.asm: 8] halt

Cycle: 7

7 instructions executed

PC=7

[reg:x0] O

[reg:x2] 524288
[reg:x3] 0

[reg:x5] 6
[reg:x6] 3
[reg:x7] 0

[reg:x31] 0
[mem:0] 1
[mem:1] 2
[mem:2] 3

53

University of Washington

Another example assembler program

text
addi x5, x0, 10
loop: print x5
addi x5, x5, -1
bne x5, x0, loop
halt

What does execution of this program print?
What is the value of the symbol ‘loop’?
Where does execution start?

54

University of Washington

Final Example

text
addi x5, x0, head
addi x6, x0, tail
sub x5, x5, x6
loop: print x5
halt What does execution of this program print?
.data
head: .word O
.word 10
.word -3
tail: .word 9

55

CSE 410 Sim vs. RISC-V RV32i

m Warning: for hwl you can completely ignore what’s said here.

m There are two big, one medium, and one small simplifications

made by the simulator at this point:

1. Memory is not addressed by word, but by byte. A byte is 8 bits, % of a word. So,
address 1 isn’t the second word of memory, it’s the second byte. The second word of
memory is in bytes 4 through 7.

We’re simulating word addressable memory now because it’s easier for humans to count
by 1 than by 4 while debugging.

2. Inreal systems, instructions and data share the same memory. So, the first word in the
data section is not at location 0 in memory. In the simulator, the data and text
segments are distinct, and each starts at its own location 0.

Again, this makes debugging easier because you don’t have to count over the
instructions to figure out the locations of the data words.

3. The simulator doesn’t actually put instructions in memory. It executes the assembly
instructions directly. It’ll be clear why in a week or two.

4. We're kind of lying about how branch target addresses are computed, but in a way that
is irrelevant now and that I'll be able to justify once | tell you how they actually work.

56

University of Washington

Big things we’ve left out that are in RISC-V

m Multiply/divide and the like

= Adding that to the ISA seems to result in instructions of varying lengths.
We want all instructions to be the same length.

m Floating point operations

= RISC-V specifies float operations and float registers. We’'ll just live
without them.

m Operations required to implement the operating system

m Atomic instructions / Multicore support

" Thread safe operations needed for multicore processors

57

