University of Washington

Computer Systems
CSE 410 Winter 2022

Instructor:
John Zahorjan

Teaching Assistants:
Yixiao Li, Suzanne Piver, Jack Zhang

University of Washington

Today’s Agenda

m Administration
= Course overview
= Staff
= General organization
= Requirements, assignments, grading
= Texts and references
= Policies

m The course

= What it’s about, our perspective

University of Washington

Organization and Administration

Everything is on the course web page:
http://www.cs.washington.edu/410

Including
= General information, policies, syllabus
= Staff information, office hours (still working on that)
= Link to discussion board (still working on that too!)
= Calendar(s) with lecture slides, links to assignments, etc.
" |nformation and links to computing resources and reference info
" Etc

By the way

® You should have received email with your account information for
klaatu.cs.washington.edu

"= Homework O is out

University of Washington

Instructor
John Zahorjan, CSE 434, zahorjan@cs

TAS
Yixiao Li

Suzanne Piver

Jack Zhang

Use the discussion board for most general interest communications.
Use csed10-staff@cs.washington.edu to contact (all) the course staff.

University of Washington

You

£ CSE 410 -

3

@ A CSE 373 Data Structures and Algorithms (4)
£~ A

@ CSE 1 43 Computer Programming 2 (5)

~ A

O, CSE 1 42 Computer Programming 1 (4)

You and CSE 410

m Our goal is to maximize useful things learned per minute of
your time spent

m There will be some programming
" |nassembler
= You’ll never do this again
" |InC

= We will not even attempt to give you enough experience to be a
skilled C programmer

® You should work on Linux machine klaatu.cs.washington.edu
m There will be “book questions”
m (There will be reading)

University of Washington

Hardware Architecture

m We'll be using RISC-V
= Descendant of MIPS, ARM, PowerPC
= QOpen source architecture

= riscv.org

m We won’t be using x86/AMD64

" “Intel architectures”

University of Washington

Textbooks

m None
" Course Documentation page
= Google

m Computer Organization and Design: RISC-V Edition

= David Patterson and John Hennessy

m Operating Systems: Principles and Practice

" Tom Anderson and Mike Dahlin

m Computer Networks

= Peterson and Davie

m The CProgramming Language

= Kernighan and Ritchie

University of Washington

Course Components

m 3 lectures per week (~30 total)
m Written assignments

m Programming assignments (“a few”)
= Assembly language is closely related to architecture
= Cisclosely related to much of the course material
m Exams (midterm + final)

= Taken remotely (“take home”)
" Test your understanding of concepts and principles

We have no idea whether we’ll go back to in-person or will stay
remote.

University of Washington

Policies: Grading

m Exams: midterm 10%, final 25% of total grade
m Written assignments: weighted according to effort required
m Programming assignments: weighted according to effort
" These will likely increase in weight as the quarter progresses
m Grading (aprox.):
" 60% assignments

= 35% exams
= 5% other

m Late policy
= Use your judgement
= Don’t be unreasonable

m Academic integrity: policy on course web
® | trust you to do what best helps your learn the material

= The goal isn’t a completed homework...
= | have no sympathy for trust violations — nor should you

10

End of Part 1

m Questions?

11

University of Washington

What is this class about?

m You've done extensive Java programming
m You understand computers at the level of the Java language

m How is that [anguage supported? What is required to execute
your program?
" What does computer hardware do?
= How is it built?
" What is the role of the compiler?
" What is the role of the Java runtime system?
" What is the role of the operating system?
= How do these components support building and running applications?
= How do networks work?

12

Computer Systems

m What do we mean by “systems”?
= Hardware and software whose purpose is to enable/facilitate creating

other hardware or software
= A “system” doesn’t do anything itself, but enables efficiently creating

an application, say, that does

m Efficiency
= One version is how much work it is to create a correctly functioning

application

= “Static”
= Another is how much time that application takes to do its job when it is

run
= “Dynamic”

13

University of Washington

This Course

m It's about interfaces

® and the implementation of those interfaces.

m We intend to go broad rather than deep
= Maximize useful information per minute of effort
= Limit workload to what’s appropriate for a 3 hour course

m When done, you should have a big picture understanding of how computer
systems work

" From the idea of a Java program in my head to the implementation of that
program writing data into a file, what has happened?

m You’'ll end up knowing things most CSE majors do not. (But they’ll know
many things you don’t as well.)

m | hope we can identify “themes” that apply at all levels

14

University of Washington

Some Themes

“Simpler is faster”
Static vs. Dynamic Evaluation
Representation and Translation

Interfaces vs. Implementation
= Layers, not options
= Policy vs. mechanism

" |nterposition to evolve functionality
m Naming / Virtualization

m Parallelism / Concurrency
= Atomicity
m Trading space for time

15

University of Washington

What This Course is About:
The Instruction Set Architecture

software
The Hardware/Software Interface —

Instruction Set Architecture (ISA) hardware

16

University of Washington

What This Course is About:
Hardware Components

int x;
x=10+3%*4;

software

CPU: Central Processing Unit

Executes instructions

Memory (RAM)
Holds values

Memory

17

University of Washington

What This Course is About:
Static vs Dynamic

exe: executable file

Program: Static oxe

Execution: Dynamic

18

University of Washington

What This Course is About:
Compiling / Building Applications

Compile/Build Time: Static
)
Program
Source /\
—» exe

Code > Compiler >
— \ /[

int x;
x=10+ 3 *4’. Memory

19

University of Washington

What This Course is About:

Interfaces and Representations
Algorithm

-Ls

A

Code Time: Static

S ———y
Y —)

Source Language Interface

! i i
— Instruction Set Architecture

Program
Source |
—| exe

Code > Compiler ‘ >
— \ /[

20

University of Washington

What This Course is About:
Interfaces and Representations

Code Time: Static

Source Language Interface

)

Program /\ |
Source ~ exe | Load Time

N

\- ! Instruction Set Architecture

N\

Code > Compiler ‘
v N\
—~ s e
Memory
Translation /

Change in Representation

exe

21

University of Washington

What This Course is About:
Many Choices for Layers

N m Bytecod
. ytecode
X interpreter (e'g,’ Java
’$\ Source Vlﬂua/
I3 Code Machine)
|l Source Language Interface
(e.g., Java)
! Bytecode Interface Compiler
) y
Program
Source ‘
Code Compiler »| bytecode | + ISA
\ exe
\) data)
\ Memory .:

/I
exe 47

22

University of Washington

What This Course is About:
Really Many Choices

' Bytecode
Statl C interpreter (e'g,’ Java
Source Vlﬂua/
|l Source Language Interface
(e.g., Java)
} Bytecode Interface Compiler
)
Program
Source ‘
Code Compiler »| bytecode | = ISA
\ exe
\ 4 data ', \
\ Memory .: o
tive ; Justintime
oxe :> compilation

. (JIT)
Dynamic

23

University of Washington

What This Course is About:
Shared Use of the Hardware

@ @
f’%‘\ ,l’_-*:\\

| | | |

I I

1. Who loads the exe file into exe w7 exe

memory in the first place?

2. How do programs that know
nothing about each other
share the hardware? Memory

exe

exe

24

University of Washington

What This Course is About:
The OS

1. Who loads the exe file into ,—% ,%\
memory in the first place? h Iy
A: The operating system (OS) g I
Who loads the OS?! l l l
A: The boot loader program exe exe exe
Who loads the boot loader?! .
A: Program in non-volatile oo
memory Io::er Boot loader
Disk
“ ” 24 0S
Boot
CPU oxe
y exe
Non-volatile -
memory YA 0S exe

25

University of Washington

What This Course is About:

The OS

2. How do programs that know nothing about each other share the hardware?
A: The operating system (OS) and the hardware together allow the OS to yank the
CPU away from a program while it’s running and give it to a different program

0S

exe

0S

AN

CUELEL

() -

26

University of Washington

What This Course is About:
Machine Organization

Application | Operating Software in
Process System Execution

Instruction Set

Architecture
Instruction rd,| Data J (e.g. ’ X86-64)
memory
Address : Registers
Instructionf— ; Machine
. Organization

(e.g., Core i7-8550)

Opcode, funct

Hardware

27

What This Course is About:
Networking

CH)—

@:\

o
COH—

Computers

-

Router

Local area network

Internet

Router

University of Washington

—O
—O
-O

server

Computers

Local area network

28

University of Washington

What This Course is About:
Networking / Errors

‘packet loss”

O —O
client] _O

O— Router Router —O
CO— ()
N—

Internet
Computers Computers

Local area network Local area network

29

University of Washington

Themes: Interfaces

m Interfaces provide abstraction

" They separate how to use a component from how the component is
implemented

" Here’s an interface:

" The interface stays the same even if what’s behind it changes (hydro vs.
coal vs nuclear vs wind ...)

" The interface makes few requirements on what uses it (toasters, USB
chargers, lamps, ...)

" =The interface promotes innovation
= Both above it and below it

30

University of Washington

Interfaces

m Backward compatible changes to interfaces are good

m Incompatible changes are bad

31

Layering?

No Layering

I Layering &
Translation

32

University of Washington

Themes: Layering (Simpler is Faster)

Java
Source
Java Language
Interface :
________ e m—————
¥
Java Java
App Source
versus ISA
—————————————— Interface !
Java VM
Interface | HW
Java
Virtual
Machine
ISA
Interface

HW

33

University of Washington

How About This?
Java
Source
Java Language
Interface :
________ e m - ——
Java
App
Javavm |
Interface |
Java
Virtual
Machine
ISA
Interface

HW

versus

Java
Source
Java Language J
I
Interface I
________ B
v
Java
App
ISA
Interface l
HW

34

University of Washington

Themes: Translation / Representation

m A “program” is written against (using) some interface
= Java program - Java language interface
= plus Java library interfaces
= Cprogram - Clanguage interface
® Code running on HW - ISA interface
= |SAinterface - machine organization interface
®= machine organization interface - logic interface
® J|ogical interface - hw implementation

m In general, higher level interfaces are more expressive
= We prefer them because it’s easier to say what we want

= Except that if they’re very expressive in some domain they’re probably very clumsy to use in
other domains

m Actual execution, though, relies on low level interfaces
= For example, it’s faster for the hw to be primitive? Why?

m Mainidea: write to a high level interface and use a program to
automatically translate to an equivalent lower level interface for execution
= A “compiler”

35

Example: C, assembly, and machine code

languages (interfaces)

if (x !'= 0) vy = (y+2)/x%;
cmpl $0, -4(%ebp) 1000001101111100001001000001110000000000
je L2 0111010000011000
movl -12(%ebp), %eax 10001011010001000010010000010100
movl -8(%ebp), %edx 10001011010001100010010100010100
leal (%edx, %eax), Y%eax 100011010000010000000010
movl %eax, %edx 1000100111000010
sarl $31, %edx 110000011111101000011111
idivl -4(%ebp) 11110111011111000010010000011100
movl %eax, -8(%ebp) 10001001010001000010010000011000

36

University of Washington

Example of Translation / Representation

if (x !'= 0) yv = (y+2z)/x;
N

cmpl $0, -4(%ebp) 1000001101111100001001000001110000000000
je L2 0111010000011000
movl -12(%ebp), %eax 10001011010001000010010000010100
movl -8(%ebp), %edx 10001011010001100010010100010100
leal (%edx, %eax), %eax 9 100011010000010000000010
movl %eax, %edx 1000100111000010
sarl $31, %edx 110000011111101000011111
idivi -4(%ebp) 11110111011111000010010000011100
movl %eax, -8(%ebp) 10001001010001000010010000011000

o The three program fragments are equivalent
o You'd would rather write C! —a more human-friendly language

37

University of Washington

Course Outcomes

m Understanding the fundamentals of what is happening in going
from creating a source file to running a program and obtaining
its output

m Understanding some of the abstractions that exist between
programs and the hardware they run on, why they exist, and
how they build upon each other

m Knowledge of key details of underlying implementations

m Become better at thinking about problem solving in ways that
have proven effective in computing

38

