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Today’s Agenda

m Administration
= Course overview
= Staff
= General organization
= Requirements, assignments, grading
= Texts and references
= Policies

m The course

= What it’s about, our perspective
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Organization and Administration

Everything is on the course web page:
http://www.cs.washington.edu/410

Including
= General information, policies, syllabus
= Staff information, office hours (still working on that)
= Link to discussion board (still working on that too!)
= Calendar(s) with lecture slides, links to assignments, etc.
" |nformation and links to computing resources and reference info
" Etc

By the way

® You should have received email with your account information for
klaatu.cs.washington.edu

"= Homework O is out
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Instructor
John Zahorjan, CSE 434, zahorjan@cs

TAS
Yixiao Li

Suzanne Piver

Jack Zhang

Use the discussion board for most general interest communications.
Use csed10-staff@cs.washington.edu to contact (all) the course staff.
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You and CSE 410

m Our goal is to maximize useful things learned per minute of
your time spent

m There will be some programming
" |nassembler
= You’ll never do this again
" |InC

= We will not even attempt to give you enough experience to be a
skilled C programmer

® You should work on Linux machine klaatu.cs.washington.edu
m There will be “book questions”
m (There will be reading)
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Hardware Architecture

m We'll be using RISC-V
= Descendant of MIPS, ARM, PowerPC
= QOpen source architecture

= riscv.org

m We won’t be using x86/AMD64

" “Intel architectures”
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Textbooks

m None
"  Course Documentation page
=  Google

m Computer Organization and Design: RISC-V Edition

= David Patterson and John Hennessy

m Operating Systems: Principles and Practice

" Tom Anderson and Mike Dahlin

m Computer Networks

=  Peterson and Davie

m The CProgramming Language

= Kernighan and Ritchie
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Course Components

m 3 lectures per week (~30 total)
m Written assignments

m Programming assignments (“a few”)
= Assembly language is closely related to architecture
= Cisclosely related to much of the course material
m Exams (midterm + final)

= Taken remotely (“take home”)
" Test your understanding of concepts and principles

We have no idea whether we’ll go back to in-person or will stay
remote.
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Policies: Grading

m Exams: midterm 10%, final 25% of total grade
m Written assignments: weighted according to effort required
m Programming assignments: weighted according to effort
" These will likely increase in weight as the quarter progresses
m Grading (aprox.):
" 60% assignments

= 35% exams
= 5% other

m Late policy
= Use your judgement
= Don’t be unreasonable

m Academic integrity: policy on course web
® | trust you to do what best helps your learn the material

= The goal isn’t a completed homework...
= | have no sympathy for trust violations — nor should you
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End of Part 1

m Questions?
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What is this class about?

m You've done extensive Java programming
m You understand computers at the level of the Java language

m How is that [anguage supported? What is required to execute
your program?
" What does computer hardware do?
= How is it built?
" What is the role of the compiler?
" What is the role of the Java runtime system?
" What is the role of the operating system?
= How do these components support building and running applications?
= How do networks work?
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Computer Systems

m What do we mean by “systems”?
= Hardware and software whose purpose is to enable/facilitate creating

other hardware or software
= A “system” doesn’t do anything itself, but enables efficiently creating

an application, say, that does

m Efficiency
= One version is how much work it is to create a correctly functioning

application

= “Static”
= Another is how much time that application takes to do its job when it is

run
= “Dynamic”
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This Course

m It's about interfaces

®  and the implementation of those interfaces.

m We intend to go broad rather than deep
=  Maximize useful information per minute of effort
= Limit workload to what’s appropriate for a 3 hour course

m When done, you should have a big picture understanding of how computer
systems work

" From the idea of a Java program in my head to the implementation of that
program writing data into a file, what has happened?

m You’'ll end up knowing things most CSE majors do not. (But they’ll know
many things you don’t as well.)

m | hope we can identify “themes” that apply at all levels
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Some Themes

“Simpler is faster”
Static vs. Dynamic Evaluation
Representation and Translation

Interfaces vs. Implementation
= Layers, not options
= Policy vs. mechanism

" |nterposition to evolve functionality
m Naming / Virtualization

m Parallelism / Concurrency
= Atomicity
m Trading space for time
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What This Course is About:
The Instruction Set Architecture

software
The Hardware/Software Interface —

Instruction Set Architecture (ISA) hardware
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What This Course is About:
Hardware Components

int x;
x=10+3%*4;

software

CPU: Central Processing Unit

Executes instructions

Memory (RAM)
Holds values

Memory
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What This Course is About:
Static vs Dynamic

exe: executable file

Program: Static oxe

Execution: Dynamic
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What This Course is About:
Compiling / Building Applications

Compile/Build Time: Static
)
Program
Source /\
—» exe

Code > Compiler >
— \ /[

int x;
x=10+ 3 *4’. Memory
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What This Course is About:

Interfaces and Representations
Algorithm

-Ls

A

Code Time: Static

S ———y
Y — )

Source Language Interface

! i i
— Instruction Set Architecture

Program
Source |
—| exe

Code > Compiler ‘ >
— \ /[
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What This Course is About:
Interfaces and Representations

Code Time: Static

Source Language Interface

)

Program /\ |
Source ~ exe | Load Time

N

\- ! Instruction Set Architecture

N\

Code > Compiler ‘
v N\
—~ s e
Memory
Translation /

Change in Representation

exe
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What This Course is About:
Many Choices for Layers

N m Bytecod
. ytecode
X interpreter (e'g,’ Java
’$\ Source Vlﬂua/
I3 Code Machine)
|l Source Language Interface
(e.g., Java)
! Bytecode Interface Compiler
) y
Program
Source ‘
Code Compiler »| bytecode | + ISA
\ exe
\ ) data )
\ Memory .:

/I
exe 47

22



University of Washington

What This Course is About:
Really Many Choices

' Bytecode
Statl C interpreter (e'g,’ Java
Source Vlﬂua/
|l Source Language Interface
(e.g., Java)
} Bytecode Interface Compiler
)
Program
Source ‘
Code Compiler »| bytecode | = ISA
\ exe
\ 4 data ', \
\ Memory .: o
tive ; Justintime
oxe :> compilation

. (JIT)
Dynamic
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What This Course is About:
Shared Use of the Hardware

@ @
f’%‘\ ,l’_-*:\\

| | | |

I I

1. Who loads the exe file into exe w7 exe

memory in the first place?

2. How do programs that know
nothing about each other
share the hardware? Memory

exe

exe
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What This Course is About:
The OS

1. Who loads the exe file into ,—% ,%\
memory in the first place? h Iy
A: The operating system (OS) g I
Who loads the OS?! l l l
A: The boot loader program exe exe exe
Who loads the boot loader?! .
A: Program in non-volatile oo
memory Io::er Boot loader
Disk
“ ” 24 0S
Boot
CPU oxe
y exe
Non-volatile -
memory YA 0S exe
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What This Course is About:

The OS

2. How do programs that know nothing about each other share the hardware?
A: The operating system (OS) and the hardware together allow the OS to yank the
CPU away from a program while it’s running and give it to a different program

0S

exe

0S

AN

CUELEL

() -
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What This Course is About:
Machine Organization

Application | Operating Software in
Process System Execution

Instruction Set

Architecture
Instruction rd,| Data J (e.g. ’ X86-64)
memory
Address : Registers
Instructionf— ; Machine
. Organization

(e.g., Core i7-8550)

Opcode, funct

Hardware
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What This Course is About:
Networking

CH)—

@:\

o
COH—

Computers

-

Router

Local area network

Internet

Router

University of Washington

—O
—O
-O

server

Computers

Local area network
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What This Course is About:
Networking / Errors

‘packet loss”

O —O
client ] _O

O— Router Router —O
CO— ()
N—

Internet
Computers Computers

Local area network Local area network
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Themes: Interfaces

m Interfaces provide abstraction

" They separate how to use a component from how the component is
implemented

" Here’s an interface:

" The interface stays the same even if what’s behind it changes (hydro vs.
coal vs nuclear vs wind ...)

" The interface makes few requirements on what uses it (toasters, USB
chargers, lamps, ...)

" =The interface promotes innovation
= Both above it and below it

30
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Interfaces

m Backward compatible changes to interfaces are good

m Incompatible changes are bad
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Layering?

No Layering

I Layering &
Translation

32
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Themes: Layering (Simpler is Faster)

Java
Source
Java Language
Interface :
________ e m—————
¥
Java Java
App Source
versus ISA
—————————————— Interface !
Java VM
Interface | HW
Java
Virtual
Machine
ISA
Interface

HW
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How About This?
Java
Source
Java Language
Interface :
________ e m - ——
Java
App
Javavm |
Interface |
Java
Virtual
Machine
ISA
Interface

HW

versus

Java
Source
Java Language J
I
Interface I
________ B
v
Java
App
ISA
Interface l
HW
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Themes: Translation / Representation

m A “program” is written against (using) some interface
= Java program - Java language interface
= plus Java library interfaces
= Cprogram - Clanguage interface
®  Code running on HW - ISA interface
= |SAinterface - machine organization interface
®= machine organization interface - logic interface
® J|ogical interface - hw implementation

m In general, higher level interfaces are more expressive
=  We prefer them because it’s easier to say what we want

=  Except that if they’re very expressive in some domain they’re probably very clumsy to use in
other domains

m Actual execution, though, relies on low level interfaces
=  For example, it’s faster for the hw to be primitive? Why?

m Mainidea: write to a high level interface and use a program to
automatically translate to an equivalent lower level interface for execution
= A “compiler”
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Example: C, assembly, and machine code

languages (interfaces)

if (x !'= 0) vy = (y+2)/x%;
cmpl $0, -4(%ebp) 1000001101111100001001000001110000000000
je L2 0111010000011000
movl -12(%ebp), %eax 10001011010001000010010000010100
movl -8(%ebp), %edx 10001011010001100010010100010100
leal (%edx, %eax), Y%eax 100011010000010000000010
movl %eax, %edx 1000100111000010
sarl $31, %edx 110000011111101000011111
idivl  -4(%ebp) 11110111011111000010010000011100
movl %eax, -8(%ebp) 10001001010001000010010000011000
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Example of Translation / Representation

if (x !'= 0) yv = (y+2z)/x;
N

cmpl  $0, -4(%ebp) 1000001101111100001001000001110000000000
je L2 0111010000011000
movl -12(%ebp), %eax 10001011010001000010010000010100
movl -8(%ebp), %edx 10001011010001100010010100010100
leal (%edx, %eax), %eax 9 100011010000010000000010
movl %eax, %edx 1000100111000010
sarl $31, %edx 110000011111101000011111
idivi  -4(%ebp) 11110111011111000010010000011100
movl %eax, -8(%ebp) 10001001010001000010010000011000

o The three program fragments are equivalent
o You'd would rather write C! —a more human-friendly language
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Course Outcomes

m Understanding the fundamentals of what is happening in going
from creating a source file to running a program and obtaining
its output

m Understanding some of the abstractions that exist between
programs and the hardware they run on, why they exist, and
how they build upon each other

m Knowledge of key details of underlying implementations

m Become better at thinking about problem solving in ways that
have proven effective in computing

38



