CSE 410 22wi- HW1 Supplement

Part 1: Overview of the HW1 Tasks

Homework 1 is mainly about understanding memory addresses, and to a lesser extent about what labels
are in assembly programming.

CSE 410 assembler (executable) programs have two memory regions, a “text segment” that contains
instructions to be executed and a “data segment” that holds possibly initialized data. In our simulator,
each instruction takes one word of memory and each data item takes one word of memory. Memory in
each segments is numbered starting at zero. So, in this example

.text

main: lw x3, 2(x0) # offset 0 in text segment
halt # offset 1 in text segment
.data
.word 10 # offset 0 in data segment
.word 11 # offset 1 in data segment
.word 12 # offset 2 in data segment
.word 13 # offset 3 in data segment

e The lw instruction is at offset 0 in the text segment

e The haltinstruction is at offset 1 in the text segment

e Thevalue 10 is at offset 0 in the data segment, 11 at offset 1, 12 at offset 2, and 13 at offset 3

e What's at offset 4 in the data segment? We don’t know. It’s not initialized, so it could be
anything. (Same for offset 2 and beyond in the text segment.) Memory locations always have
bits, even if your code hasn’t set them to any particular value.

The Iw in this program says to take the contents of x0, which is a special register whose contents are
always zero, and add 2 to them, then fetch the word from the data segment at the offset given by
the result (2) and copy the bits there into register 3. (“x3” is the name for register 3 when talking to
the assembler. That distinguishes it from “3”, which might mean 3.) That is, we put 12 into register
3.

For this program, we know at code time (now) what it will do, because we know what the values of
the data segment words are. For hw1, though, you should imagine that the data segment looks
more like this:

.data
.word ???
.word ???

For instance, pretend the first thing our program did was read three integers from the keyboard and
store them in the first three words of the data segment. Then you wouldn’t know at code time what
the value would be that you loaded from memory into a register with a lw instruction. We don’t
actually do that because I/0 (input-output) is complicated, and at this point the simulator doesn’t
support it (and we have no plans to support it). So, while we know at code time what the values
are, you have to pretend that we don’t, that they could be anything, and then write instructions that

work in that circumstance. One way to think of this is that we will replace your .data segment with
a different one when grading your program, and your code should print the right result for our data.

Part 2: Labels

It is clumsy and very error prone for the assembly language programmer to count offsets. More
substantial programs will use hundreds or thousands of memory locations in the data segment, and will
have thousands of instructions. To help, the assembler lets you put labels anywhere you’d like, and then
refer to the label instead of having to give an offset as a literal. For instance, here’s the example code
above re-written using a label:

.text
main: lw x3, A
halt
.data
.word 10
.word 11
A: .word 12
.word 13

Three things about this:

e The assembler considers labels to be symbolic constants, kind of like
final int A = 2;
inJava. That s, a label is an integer. It is not a variable — you cannot assign a value to it. Its
value is known at assembly time, because the assembler figures out what offset it’s at.
e The value of “main” above is 0. It's at offset 0 in its segment (the text segment). The value of A
is 2. It's at offset two in its segment. Therefore,
Iw x3, A(x0)
Iw x3, 2(x0)
are exactly the same. So are
Iw x3, A(x2)
Iw x3, 2(x2)
e Ifyou just say
lw x3,A
the assembler turns it into
Iw x3, A(x0)
which is
Iw x3, 2(x0)

Part 3: More About Labels
Because the assembler thinks of labels as symbolic constants, you can use them wherever you could use
a constant.

.text
addi x1, x0, second

addi X2, xO, first

sub x1, x1, x2

print x1

halt

.data

.word 1
first: .word 1

.word 1
second: .word 1

That program prints 2.

Part 4: Effective Addresses

The “effective address” is the address computed by adding the contents of the base register and the
offset. For instance, if x2 contains the value 3, then 10(x2) results in an effective address of 13.

e An “absolute address” is an offset into the data segment. If you knew you wanted word 10 of
the data segment, for instance, you’d write
lw x3,10 #or..
Iw x3, 10(x0)
e If you want a word that has a label, say X, then you don’t need to know its offset, you just use its

label:
lw x3,X #or
lw x3, X(x0)

e Sometimes you know that the word you want is some distance past where a base register
points. Forinstance, arrays are stored as consecutive words of memory. In many languages, int
A(10) reserves 10 words of memory, one right after another. if x2 holds the address of word 0
of array A, then you can load A[3] into x4 with

Iw x4, 3[x2]
At code time you don’t need to know where the array is in memory, just that x2 points at it (i.e.,
holds the address of A[0]) and that you want the word at offset 3.
e What about A[i]? What if x2 holds the address of A[0] and x3 holds the index i?
Then you need an extra instruction:
add x4, x2,x3
Iw x4, 0(x4)

Here’s some sample code that is array-like:

.text

addi x1,x0, Array # point x1 at Array

Iw x2, 2(x1) # put Array[2] in x2

addi x3,x1,2 # these two instructions are a slower way to...
Iw x2, 0(x3) H load Array[2] into x2

halt

.data

.word 4

Array: .word -1
.word -1
.word -1

