WA UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Virtual Memory |
CSE 410 Winter 2017

Instructor: Teaching Assistants:
Justin Hsia Kathryn Chan, Kevin Bi, Ryan Wong, Waylon Huang, Xinyu Sui

Amazon AWS S3 outage is breaking things for a lot of websites and apps

Amazon’s S3 web-based storage service 1s experiencing widespread issues, leading to

service that’s either partially or fully broken on websites, apps and devices upon which it
relies. Connected lightbulbs, thermostats and other IoT hardware is also being impacted,
with many unable to control these devices as a result of the outage. ﬁ i.i

It’s used by 0.8 percent of the top 1 million websites, which 1s
actually quite a bit smaller than CloudFlare, which is used by 6.2 E - = am
percent of the top 1 million websites globally — and yet it’s still ="

having this much of an effect. !

* https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-
lot-of-websites-and-apps/

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Administrivia

+» Lab 4 due next Tuesday (3/7)
+» Homework 5 released today, due next Thursday (3/9)

+» Optional Section: Processes, VM Intro

+ Final Exam: Tuesday, March 14 @ 2:30pm (MGH 241)
= Review Session: Sunday, March 12 @ 1:30pm in SAV 264
" Cumulative (midterm clobber policy applies)
" TWO double-sided handwritten 8.5X11” cheat sheets

- Recommended that you reuse or remake your midterm cheat sheet

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();
~ —
Assembly get_mpg:
. pushg %rbp
anguage: movg Krsp. hrbp Virtual memory
éééq %rbp
ret | 0S:
\ 4
Machine 0111010000011000 . '
de: 100011010000010000000010 - A
code. 1000100111000010 |} AL
110000011111101000011111 Windows 8 Mac e
B |
v V
Computer

system:

CSE410, Winter 2017

W UNIVERSITY of WASHINGTON L22: Virtual Memory |

Virtual Memory (VM¥*)

+» Overview and motivation

» VM as a tool for caching

+» Address translation

» VM as a tool for memory management
+» VM as a tool for memory protection

Warning: Virtual memory is pretty complex,

but crucial for understanding how processes
work and for debugging performance

*Not to be confused with “Virtual Machine” which is a whole other thing.

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Memory as we know it so far... is virtual!

+ Programs refer to virtual memory addresses OXFF-++F
= movg (%rdi),%rax

" Conceptually memory is just a very large array of bytes
= System provides private address space to each process

+ Allocation: Compiler and run-time system
" Where different program objects should be stored
= All allocation within single virtual address space

<« But...

= We probably don’t have 2% bytes of physical memory

= We certainly don’t have 2% bytes of physical memory
for every process

= Processes should not interfere with one another 0x00-+--+-0

- Except in certain cases where they want to share code or data

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Problem 1: How Does Everything Fit?

64-bit virtual addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,59%\bytes)

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

stailler Hran Fhis !

1 virtual address space per process,
with many processes...

W UNIVERSITY of WASHINGTON

Problem 2:

We have multiple
processes:

Process 1
Process 2
Process 3

Process n

L22: Virtual Memory |

CSE410, Winter 2017

Memory Management

Each process has...

stack
heap
- text

_data

What goes
where?

Physical main memory

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Problem 3: How To Protect

Physical main memory
o :K\(>
Process }

Problem 4: How To Share?

Physical main memory

Processj /

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

How can we solve these problems?

1)

2)
3)

4)

Fitting a huge address space into a tiny physical
memory

Managing the address spaces of multiple processes

Protecting processes from stepping on each other’s
memory

Allowing processes to share common parts of
memory

WA UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Indirection

« “Any problem in computer science can be solved by adding
another level of indirection.” -pavid Wheeler, inventor of the subroutine

Pl ~re
................. —) | .

WIthOUt |ndlreCt|On P2 ... 4; _ Thlng

P3 7; NewThing

P1
With Indirection -

P2 o — | | Thing

p3 —— T _

*1 |NewThing

What if | want to move Thing?

10

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Indirection

« Indirection: The ability to reference something using a name,

reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.

= Adds some work (now have to look up 2 things instead of 1)

= But don’t have to track all uses of name/address (single source!)

Examples:

" Phone system: cell phone number portability
= Domain Name Service (DNS): translation from name to IP address
= Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

11

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Indirection in Virtual Memory

Virtual memory

Process 1

Physical memory

mapping

Virtual memory

Process n

+ Each process gets its own private virtual address space
+ Solves the previous problems!

12

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Address Spaces s /w\.,\ﬁ funchion

—\\I \’ (round v\f)
" =
+ Virtual address space: Setof N = 2 V|rtual addr

- {O) 1/ 2/ 3/ ey N_l} byles j M = rﬂ’O'Q(zM‘
+ Physical address space: Set of M = 2™ physical addr
= {0,1,2,3,.. M-1}

+ Every byte in main memory has:
" one physical address (PA)

" zero, one, or more virtual addresses (VAs)

j ((. wed by many procesie §
hused wek by sne pracess

13

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSEA410, Winter 2017

Mapping

+ A virtual address (VA) can be mapped to either physical
memory or disk

®" Unused VAs may not have a mapping

= VAs from different processes may map to same location in memory/disk

\

Process 1’s Virtual=p
Address Space

Physical
f\/» Memory

D \ “Swap Space”

14

Process 2’s Virtual
Address Space

SLrirs

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

A System Using Physical Addressing

Main memory

0:
1:
2:
Physical address (PA) 3: w
CPU > 4.
A -
6:
7:)
8:
M-1:

Data (int/float)

+» Used in “simple” systems with (usually) just one process:

" Embedded microcontrollers in devices like cars, elevators, and digital
picture frames

15

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address < Physical address 32;
(VA) N (PA) ' «
CPU S > MMU > 4:
0x4100 ~_) Ox4 c.
A . \
6:
7:)
8:
Memory Management Unit
M-1

Data (int/float)

+ Physical addresses are completely invisible to programs
" Used in all modern desktops, laptops, servers, smartphones...
" One of the great ideas in computer science

16

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory |

Why Virtual Memory (VM)?

+ Efficient use of limited main memory (RAM)

= Use RAM as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk

- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed

X/

+ Simplifies memory management for programmers
= Each process “gets” the same full, private linear address space
+ |solates address spaces (protection)

" One process can’t interfere with another’s memory
- They operate in different address spaces
= User process cannot access privileged information

- Different sections of address spaces have different permissions

17

CSE410, Winter 2017

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

VM and the Memory Hierarchy

+ Think of virtual memory as array of N = 2" contiguous bytes

+ Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk (g p

2

= Pages are another unit of aligned memory (size is F = 2P bytes)

= Each virtual page can be stored in any physical page (no fragmentation!)

ho udsTéA s‘oue /50\()5

Virtual memory Physical memory o

0 =3

0 Empty PPO)

> VP O | Unallocated , PP 1 g‘l

% VP1]lin mem Empty IS

v in disk ®

oo Unallocated \ / Empty 2

© o

o > PP 2mP-1 'q

© L
-
=
>

VP 2mp-1

“Swap Space”

18

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

or: Virtual Memory as DRAM Cache for Disk

+ Think of virtual memory as an array of N = 2™ contiguous
bytes stored on a disk

+ Then physical main memory is used as a cache for the
virtual memory array

" These “cache blocks” are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0

VP O | Unallocated
0

VP 1 | Cached \ Empty PP O
Uncached PP 1

Unallocated Empty
Cached
Uncached Empty

Cached PP 2m-p-1
VP 2np-1 ‘ Uncached | M-

Physical pages (PPs)
cached in DRAM

Virtual pages (VPs)
“stored on disk”
19

WA UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Memory Hierarchy: Core 2 Duo Not drawn to scale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
' ~4mp 1! ~8 GB ‘ ~500 GB
L2 Mai -
L1 ain
unified D | S k

> I-cache Memor
a cache y
L1 . o o

Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x

20

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Virtual Memory Desigh Consequences

+» Large page size: typically 4-8 KiB or 2-4 MiB
= Can be up to 1 GiB (for “Big Data” apps on big computers)
" Compared with 64-byte cache blocks

« Fully associative (physicl memory IS single Se+)
= Any virtual page can be placed in any physical page

= Requires a “large” mapping function — different from CPU caches

+ Highly sophisticated, expensive replacement algorithms in OS
" Too complicated and open-ended to be implemented in hardware

% M/rite-bac7<] rather than write-through (feade &y pages)

" Really don’t want to write to disk every time we modify something in
memory

= Some things may never end up on disk (e.g. stack for short-lived process)

21

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Why does VM work on RAM/disk?

= Avoids disk accesses because of locality

= Same reason that L1 /L2 / L3 caches work

+» The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= |f (working set of one process < physical memory):
- Good performance for one process (after compulsory misses)

" If (working sets of all processes > physical memory):

- Thrashing: Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or

paging)
- This is why your computer can feel faster when you add RAM

22

W UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Virtual Memory (VM)

>

Overview and motivation

L)

o®

VM as a tool for caching
Address translation

*

/
*

» VM as a tool for memory management

0‘0

VM as a tool for memory protection

23

W UNIVERSITY of WASHINGTON L22: Virtual Memory |

Address Translation

How do we perform the virtual
— physical address translation?

Main memory

0:

CPU Chip 1:
Virtual address ™\ Physical address g

CPU) MMU \ il > 4.
0x4100 YV 0ox4 5.

- :

6:

7:

8:

Memory Management Unit

M-1:

Y

CSE410, Winter 2017

Data (int/float)

24

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSEA410, Winter 2017

Address Translation: Page Tables
VPN width 'n-Pd—>we have prpajej in VA space prye s\ze 1>L’)"‘e}

+» CPU-generated address carLbe split intop: . & p= oy, P bt

- K—_A_/—\
n-bitaddress: | Virtual Page Number | Page Offset
J\V\O\'ij.f +O Y | lglock hurmber | block O_H‘J /"g)f' “(inej

= Request is Virtual Address (VA), want Physical Address (PA)
= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" |Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

" Has an entry for every virtual page — why?
NO \baLku‘o‘For mpr\jS é ' conm be 6\,\\14’[\ r\ﬁ)

25

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Page Table Diagram

Physical memory
(DRAM) Phr

VPN Page Table
Virtual page # (DRAM) VP 1 PPO
\ Valid PPN/Disk Addr / VP 2 PP 1
PTEO: 0] 0 null //
—— VP 7 PP2.
PTE2: 2[1 VP 4 PP3
PTE 3: _3_. 0
PTE4: 4| 1 Virtual memory
PTES: 5[0 (DRAM/disk)
PTEE: 6| O
PTE7: 7| 1
09e talle has 2 e,\—h,e;’ \\ e VP 3
+ Page tables stored in physical memory ~~-__
" Too big to fit elsewhere — managed by MMU & OS RN

by VP 6

+» How many page tables in the system?

" One per process

26

WA UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Page Table Address Translation

hanged o
Chan)
yd /0\ Covd% xT suircn

CP

Virtual address (VA) /

% Virtual page number (VPN) / Virtual page offset (VPO) n \or}l
[

Page table address Page table

for process 5 Valid PPN

Page table
base register
(PTBR)
|

N\

bk proe L VPop o
folde o VPN ety

Valid bit = 0:
page not in memory <€

(fault)
page fau ! / ‘l’

Physical page number (PPN) / Physical page offset (PPO) m \o{’b'
In most cases, the MMU can Physical address (PA) /

perform this translation
without software assistance

27

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Page Hit

+» Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
pTEO [0 null] vwe1 PP O

1 VP 2

Y 1 VP 7 PP2
2 VP4 PP 3
0
0 Virtual memory

— > p1eQ)[1 (DRAM/disk)

) N S~ VP 3
Example: Page size =4 KiB=7'"B <= p=I2Lits= 3 hex Jigits pS

® N
.) : . 4 VP 6
Virtual Addr: OX\QQ?/?E&)E+ P\hys:caIAddr :{Ox 2 Hob

() ven: e @pPpN: 2

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Page Fault

Page fault: VM reference is NOT in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO [0 null] vp1 PPO
1 — > VP2
211 o—
VP 7
Byo L /
= > VP 4 PP 3
1 e—
0 null .
0 e S Virtual memory
PTE7 [1 N Ss (DRAM/disk)
) . RN EEECE
Example: Page size = 4 KiB O
Provide a virtual address request (in hex) that ‘\A Y-

results in this particular pag\e/falu\lt: sy Fhre

he
Virtual Addr: Ox 3/000 \hest 3&5\'“ (4

_ J 29

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Page Fault Exception

int af1000];

User writes to memory location int main ()

{
That portion (page) of user’s memory a[500] = 13:
is currently on disk ks
80483b7: c7 05 10 9d 04 08 0Od movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault handle_page_fault:

movil % >
Create page and
returns load into memory

v

Page fault handler must load page into physical memory
Returns to faulting instruction: mov is executed again!

= Successful on second try
30

WA UNIVERSITY of WASHINGTON

L22: Virtual Memory |

Handling a Page Fault

+ Page miss causes page fault (an exception)

Virtual address

Page Table (DRAM)
Valid PPN/Disk Addr

PTEO | O null

CSE410, Winter 2017

Physical memory
(DRAM)

] vp1 PP O

VP 2

- VP 7
VP 4 PP 3

PTE 7

N) (=] (=] Y (=) Il L
/

* VP 3

4 VP 6

Virtual memory
(DRAM/disk)

31

WA UNIVERSITY of WASHINGTON

Virtual address

Valid PPN/Disk Addr (DRAM)
pTE0 [0 null I
1 — | , VP 2
1 —
VP 7
> 0 e /
1 —= g VP4
0 il "~ Virtual memory
0 =N o (DRAM/disk)
PTE7 [1 o~ . ey

Page Table (DRAM)

L22: Virtual Memory |

Handling a Page Fault

Page miss causes page fault (an exception) by
+» Page fault handler selects a victim to be evicted (here VP

Physical memory

VP 3

VP 6

CSE410, Winter 2017

PP O

PP 3

Q}\Jrge
ack if
&'\H‘y

32

WA UNIVERSITY of WASHINGTON

L22: Virtual Memory |

Handling a Page Fault

+ Page miss causes page fault (an exception)
+» Page fault handler selects a victim to be evicted (here VP 4)

U\pA ated
Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
pTE0 [0 null] vp1
1 — > VP 2
1 o—
VP 7
Thvalidated > 0 e
0 null “~ Virtual memory
0 e < (DRAM/disk)
PTE7 [1 - |-

VP 4

VP 6

CSE410, Winter 2017

PP O

PP 3

33

W UNIVERSITY of WASHINGTON

L22: Virtual Memory |

Handling a Page Fault

+ Page miss causes page fault (an exception)

+ Page fault handler selects a victim to be evicted (here VP 4)

+ Offending instruction is restarted: page hit!

Page Table (DRAM)

CSE410, Winter 2017

Physical memory

Virtual address Valid PPN/Disk Addr (DRAM)
PTE0 [0 null] vp1 PP O
/ 1 — : VP 2
hit. o VP 7
g= = — —r3 PP 3
0 e
0 null "~ Virtual memory
0 e S (DRAM/disk)
PTE7 [1 o R

VP 4

VP 6

34

WA UNIVERSITY of WASHINGTON

L22: Virtual Memory | CSE410, Winter 2017

Peer Instruction Question

2 How many bits wide are the following fields?

= 16 K|B pages

= |4 bits

. 4§ bltbwrtual addresses n =4¢ bits &> 256 TiB virfua memory
o 16 G|B physical memory m =4 bits
= Vote at: http://PollEv.com/justinh

VPN PPN

k\)(darbj n- P 3'—' E“'S <—-—7 2 P“ﬁeJ |h Vi v-'\'uo.‘ aMress sf(ACC

PPN m-p = 20 bAsy — 210 poyes n P\\\/.n'ca‘ add ress Space
width

35

WA/ UNIVERSITY of WASHINGTON L22: Virtual Memory | CSE410, Winter 2017

Summary

+ Virtual memory provides:

= Ability to use limited memory (RAM) across multiple
processes

" |llusion of contiguous virtual address space for each process
" Protection and sharing amongst processes

+ Indirection via address mapping by page tables
= Part of memory management unit and stored in memory

= Use virtual page number as index into lookup table that
holds physical page number, disk address, or NULL
(unallocated page)

" On page fault, throw exception and move page from swap
space (disk) to main memory

36

