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Topics 

 Secondary Storage – Disks 
 Characteristics 

 Place in memory hierarchy 

 File Systems 
 Files, directories, and disk blocks 

 Classic Unix file system 
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Secondary storage 

 Secondary storage typically: 
 is anything that is outside of “primary memory” 

 does not permit direct execution of instructions or data retrieval via 
machine load/store instructions 

 Characteristics: 
 it’s large: 250-2000GB 

 it’s cheap:  $0.05/GB for hard drives 

 it’s persistent: data survives power loss 

 it’s slow: milliseconds to access 

 why is this slow?? 

 it does fail, if rarely 

 big failures (drive dies; MTBF ~3 years) 

– if you have 100K drives and MTBF is 3 years, that’s 1 “big 
failure” every 15 minutes! 

 little failures (read/write errors, one byte in 1013) 
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A trip down memory lane … 

IBM 2314 

About the size of 

 6 refrigerators 

8 x 29MB (M!) 

Required similar-
sized air cond.! 

.01% (not 1% – .01%!) the capacity of this 
$100 4”x6”x1” item 
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 Disk capacity, 1975-1989 
 doubled every 3+ years 

 25% improvement each year 

 factor of 10 every decade 

 Still exponential, but far less rapid than processor performance 

 Disk capacity, 1990-recently 
 doubling every 12 months 

 100% improvement each year 

 factor of 1000 every decade 

 Capacity growth 10x as fast as processor performance! 

 

Disk trends 
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Disk Trends 

 Only a few years ago, we purchased disks by the megabyte 
(and it hurt!) 

 Today, 1 GB (a billion bytes) costs $1 $0.50 $0.05 from Dell 
(except you have to buy in increments of 40 80 250 1000 GB) 
 => 1 TB costs $1K $500 $50, 1 PB costs $1M $500K $50K 

 Technology is amazing 
 Flying a 747 6” above the ground 

 Reading/writing a strip of postage stamps 

 But … 
 Jets do crash … 
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Memory hierarchy 

 Each level acts as a cache of lower levels 

CPU registers 

L1 cache 

L2 cache 

Primary Memory 

Secondary Storage 

Tertiary Storage 

100 bytes 

32KB 

256KB 

1GB 

1TB 

1PB 

10 ms 

1s-1hr 

< 1 ns 

1 ns 

4 ns 

60 ns 

31 May 2012 Disks and File Systems 7 



University of Washington 

Memory hierarchy: distance analogy 

CPU registers 

L1 cache 

L2 cache 

Primary Memory 

Secondary Storage 

Tertiary Storage 

1 minute 

10 minutes 

1.5 hours 

2 years 

2,000 years 

Pluto 

Andromeda 

   “My head” 

  “This room” 

“This building” 

Olympia 

seconds 
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Disks and the OS 

 Disks are messy, messy devices 
 errors, bad blocks, missed seeks, etc. 

 Job of OS is to hide this mess from higher-level software (disk 
hardware increasingly helps with this) 
 low-level device drivers (initiate a disk read, etc.) 

 higher-level abstractions (files, databases, etc.) 

 OS may provide different levels of disk access to different 
clients 
 physical disk block (surface, cylinder, sector) 

 disk logical block (disk block #) 

 file logical (filename,  block or record or byte #) 
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Physical disk structure 

 Disk components 
 platters 

 surfaces 

 tracks 

 sectors 

 cylinders 

 arm 

 heads 

platter 

surface 

track 
sector 

cylinder 

arm 

head 
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Disk performance 

 Performance depends on a number of steps 
 seek: moving the disk arm to the correct cylinder 

 depends on how fast disk arm can move 

– seek times aren’t diminishing very quickly (why?) 

 rotation (latency): waiting for the sector to rotate under head 

 depends on rotation rate of disk 

– rates are increasing, but slowly (why?) 

 transfer: transferring data from surface into disk controller, and from 
there sending it back to host 

 depends on density of bytes on disk 

– increasing, relatively quickly 

 When the OS uses the disk, it tries to minimize the cost of all 
of these steps 
 particularly seeks and rotation 
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Interacting with disks 

 In the old days… 
 OS would have to specify cylinder #, sector #, surface #, transfer size 

 i.e., OS needs to know all of the disk parameters 

 Modern disks are even more complicated 
 not all sectors are the same size, sectors are remapped, … 

 disk provides a higher-level interface, e.g., SCSI 

 exports data as a logical array of blocks [0 … N] 

 maps logical blocks to cylinder/surface/sector 

 OS only needs to name logical block #, disk maps this to 
cylinder/surface/sector 

 on-board cache 

 as a result, physical parameters are hidden from OS 

– both good and bad 
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Seagate Barracuda 3.5” disk drive 

• 1Terabyte of storage (1000 GB) 

• $100 

• 4 platters, 8 disk heads 

• 63 sectors (512 bytes) per track 

• 16,383 cylinders (tracks) 

• 164 Gbits / inch-squared (!) 

• 7200 RPM 

• 300 MB/second transfer 

• 9 ms avg. seek, 4.5 ms avg. rotational latency 

• 1 ms track-to-track seek 

• 32 MB cache 
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Solid state drives: imminent disruption 

 Hard drives are based on spinning magnetic platters 
 mechanics of drives determine performance characteristics 

 sector addressable, not byte addressable 

 capacity improving exponentially 

 sequential bandwidth improving reasonably 

 random access latency improving very slowly 

 cost dictated by massive economies of scale, and many decades of 
commercial development and optimization 
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Solid State Drives 

 Solid state drives are based on NAND flash memory 
 no moving parts; performance characteristics driven by electronics and 

physics – more like RAM than spinning disk 

 relative technological newcomer, so costs are still quite high in 
comparison to hard drives, but dropping fast 

31 May 2012 Disks and File Systems 16 



University of Washington 

SSD performance: reads 

 Reads 
 unit of read is a page, typically 4KB large 

 today’s SSD can typically handle 10,000 – 100,000 reads/s 

 0.01 – 0.1 ms read latency (50-1000x better than disk seeks) 

 40-400 MB/s read throughput  (1-3x better than disk seq. thpt) 
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SSD performance: writes 

 Writes 
 flash media must be erased before it can be written to 

 unit of erase is a block, typically 64-256 pages long 

 usually takes 1-2ms to erase a block 

 blocks can only be erased a certain number of times before they 
become unusable – typically 10,000 – 1,000,000 times 

 unit of write is a page 

 writing a page can be 2-10x slower than reading a page 

 Writing to an SSD is complicated 
 random write to existing block:  read block, erase block, write back 

modified block 

 leads to hard-drive like performance (300 random writes / s) 

 sequential writes to erased blocks:  fast! 

 SSD-read like performance (100-200 MB/s) 
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SSDs: dealing with erases, writes 

 Lots of higher-level strategies can help hide the warts of an 
SSD 
 many of these work by virtualizing pages and blocks on the drive  (i.e., 

exposing logical pages, not physical pages, to the rest of the computer) 

 wear-leveling:  when writing, try to spread erases out evenly across 
physical blocks of of the SSD 

 Intel promises 100GB/day x 5 years for its SSD drives 

 log-structured filesystems:   convert random writes within a filesystem 
to log appends on the SSD (more later) 

 build drives out of arrays of SSDs, add lots of cache 
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SSD cost 

 Capacity 
 today, flash SSD costs ~$2.50/GB 

 1TB drive costs around $2500 

– 1TB hard drive costs around $100 

 Data on cost trends is a little sketchy and preliminary 

 

 Energy 
 SSD is typically more energy efficient than a hard drive 

 1-2 watts to power an SSD 

 ~10 watts to power a high performance hard drive 

– (can also buy a 1 watt lower-performance drive) 
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Interface Layers

OS Disk
Std.

Runtime
Library

App.

Code

Device-type
Dependent Commands

Syscalls

Procedure
Calls

Whatever…

Interface Layers 
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Exported Abstractions

OS Disk
Std.

Runtime
Library

App.

Code

Array of BlocksDirectories,
Directory Entries,

Files,…

Whatever

/

etcroot

OS +
a tiny bit of

file type / structure

/

etcroot
.xls

Exported Abstractions 
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Primary Roles of the OS (file system)

OS Disk

/

etcroot

1. Hide hardware specific 

interface

2. Allocate disk blocks

3. Check permissions

4. Understand directory 

file structure

5. Maintain metadata

6. Performance

7. Flexibility 

Why does the OS define directories?
  
Why not leave that to the 

library/application layer?

(Why would you want to leave it to 
the app/library?)

Primary Roles of the OS (file system) 
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File systems 

 The concept of a file system is simple 
 the implementation of the abstraction for secondary storage 

 abstraction = files 

 logical organization of files into directories 

 the directory hierarchy 

 sharing of data between processes, people and machines 

 access control, consistency, … 
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Files 

 A file is a collection of data with some properties 
 contents, size, owner, last read/write time, protection … 

 Files may also have types 
 understood by file system 

 device, directory, symbolic link 

 understood by other parts of OS or by runtime libraries 

 executable, dll, source code, object code, text file, … 

 Type can be encoded in the file’s name or contents 
 windows encodes type in name 

 .com, .exe, .bat, .dll, .jpg, .mov, .mp3, … 

 old Mac OS stored the name of the creating program along with the file 

 unix has a smattering of both 

 in content via magic numbers or initial characters (e.g., #!) 
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Basic operations 

Windows 
• CreateFile(name, CREATE) 

• CreateFile(name, OPEN) 

• ReadFile(handle, …) 

• WriteFile(handle, …) 

• FlushFileBuffers(handle, …) 

• SetFilePointer(handle, …) 

• CloseHandle(handle, …) 

• DeleteFile(name) 

• CopyFile(name) 

• MoveFile(name) 

Unix 
• create(name) 

• open(name, mode) 

• read(fd, buf, len) 

• write(fd, buf, len) 

• sync(fd) 

• seek(fd, pos) 

• close(fd) 

• unlink(name) 

• rename(old, new) 
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Directories 

 Directories provide: 
 a way for users to organize their files 

 a convenient file name space for both users and FS’s 

 Most file systems support multi-level directories 
 naming hierarchies (/, /usr, /usr/local, /usr/local/bin, …) 

 Most file systems support the notion of current directory 
 absolute names: fully-qualified starting from root of FS 

bash$ cd /usr/local 

 relative names: specified with respect to current directory 
bash$ cd /usr/local  (absolute) 

bash$ cd bin         (relative, equivalent to cd /usr/local/bin) 
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Directory internals 

 A directory is typically just a file that happens to contain 
special metadata 
 directory = list of (name of file, file attributes) 

 attributes include such things as: 

 size, protection, location on disk, creation time, access time, … 

 the directory list is usually unordered (effectively random) 

 when you type “ls”, the “ls” command sorts the results for you 
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Path name translation 

 Let’s say you want to open “/one/two/three” 
fd = open(“/one/two/three”, O_RDWR); 

 What goes on inside the file system? 
 open directory “/”  (well known, can always find) 

 search the directory for “one”, get location of “one” 

 open directory “one”, search for “two”, get location of “two” 

 open directory “two”, search for “three”, get loc. of “three” 

 open file “three” 

 (of course, permissions are checked at each step) 

 FS spends lots of time walking down directory paths 
 this is why open is separate from read/write (session state) 

 OS will cache prefix lookups to enhance performance 

 /a/b, /a/bb, /a/bbb all share the “/a” prefix 
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File protection 

 FS must implement some kind of protection system 
 to control who can access a file (user) 

 to control how they can access it (e.g., read, write, or exec) 

 More generally: 
 generalize files to objects  (the “what”) 

 generalize users to principals  (the “who”, user or program) 

 generalize read/write to actions  (the “how”, or operations) 

 A protection system dictates whether a given action 
performed by a given principal on a given object should be 
allowed 
 e.g., you can read or write your files, but others cannot 

 e.g., your can read  /etc/motd  but you cannot write to it 
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The original Unix file system 

 Dennis Ritchie and Ken Thompson, Bell Labs, 1969 

 “UNIX rose from the ashes of a multi-organizational effort in 
the early 1960s to develop a dependable timesharing 
operating system” – Multics 

 Designed for a “workgroup” sharing a single system 

 Did its job exceedingly well 
 Although it has been stretched in many directions and made ugly in the 

process 

 A wonderful study in engineering tradeoffs 
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(Old) Unix disks are divided into five parts … 

 Boot block 
 can boot the system by loading from this block 

 Superblock 
 specifies boundaries of next 3 areas, and contains head of freelists of 

inodes and file blocks 

 i-node area 
 contains descriptors (i-nodes) for each file on the disk; all i-nodes are 

the same size; head of freelist is in the superblock 

 File contents area 
 fixed-size blocks; head of freelist is in the superblock 

 Swap area 
 holds processes that have been swapped out of memory 
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So … 

 You can attach a disk to a dead system … 

 Boot it up … 

 Find, create, and modify files … 
 because the superblock is at a fixed place, and it tells you where the i-

node area and file contents area are 

 by convention, the second i-node is the root directory of the volume 
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i-node format 

 User number 

 Group number 

 Protection bits 

 Times (file last read, file last written, inode last written) 

 File code:  specifies if the i-node represents a directory, an 
ordinary user file, or a “special file” (typically an I/O device) 

 Size:  length of file in bytes 

 Block list:  locates contents of file (in the file contents area) 
 more on this soon! 

 Link count:  number of directories referencing this i-node 
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The flat (i-node) file system 

 Each file is known by a number, which is the number of the i-
node 
 seriously – 1, 2, 3, etc.! 

 why is it called “flat”? 

 Files are created empty, and grow when extended through 
writes 
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The tree (directory, hierarchical) file system 

 A directory is a flat file of fixed-size entries 

 Each entry consists of an i-node number and a file name  

i-node number File name 

152 . 

18 .. 

216 my_file 

4 another_file 

93 oh_my_god 

144 a_directory 

• It’s as simple as that! 
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The “block list” portion of the i-node (Unix Version 7) 

 Points to blocks in the file contents area 

 Must be able to represent very small and very large files.  
How? 

 Each inode contains 13 block pointers 
 first 10 are “direct pointers” (pointers to 512B blocks of file data) 

 then, single, double, and triple indirect pointers 
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So … 

 Only occupies 13 x 4B in the i-node 

 Can get to 10 x 512B = a 5120B file directly 
 (10 direct pointers, blocks in the file contents area are 512B) 

 Can get to 128 x 512B = an additional 65KB with a single 
indirect reference 
 (the 11th pointer in the i-node gets you to a 512B block in the file 

contents area that contains 128 4B pointers to blocks holding file data) 

 Can get to 128 x 128 x 512B = an additional 8MB with a 
double indirect reference 
 (the 12th pointer in the i-node gets you to a 512B block in the file 

contents area that contains 128 4B pointers to 512B blocks in the file 
contents area that contain 128 4B pointers to 512B blocks holding file 
data) 
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And … 

 Can get to 128 x 128 x 128 x 512B = an additional 1GB with a 
triple indirect reference 
 (the 13th pointer in the i-node gets you to a 512B block in the file 

contents area that contains 128 4B pointers to 512B blocks in the file 
contents area that contain 128 4B pointers to 512B blocks in the file 
contents area that contain 128 4B pointers to 512B blocks holding file 
data) 

 Maximum file size is 1GB + a smidge 
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And then … 

 A later version of Bell Labs Unix utilized 12 direct pointers 
rather than 10 
 Why? 

 Berkeley Unix went to 1KB block sizes 
 What’s the effect on the maximum file size? 

 256x256x256x1K = 17 GB + a smidge 

 What’s the price? 

 Subsequently went to 4KB blocks 
 1Kx1Kx1Kx4K = 4TB + a smidge 
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Putting it all together 

 The file system is just a huge data structure 

 

 
41 

superblock 

inode 

free list 

file block 

free list 

inode for ‘/’ 

directory ‘/’ 

(table of entries) 

inode for 

‘usr/’ 
inode for 

‘var/’ 

directory ‘var/’ 

(table of entries) 
directory ‘usr/’ 

(table of entries) 

••• 
••• 

inode for 

‘bigfile.bin’ 

data blocks 

indirection block 

data blocks 

Indirection 

block data blocks 

indirection 

block 

••• 

••• 
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File system layout 

 One important goal of a filesystem is to lay this data structure 
out on disk 
 have to keep in mind the physical characteristics of the disk itself  

(seeks are expensive) 

 and the characteristics of the workload  (locality across files within a 
directory, sequential access to many files) 

 Old UNIX’s layout is very inefficient 
 constantly seeking back and forth between inode area and data block 

area as you traverse the filesystem, or even as you sequentially read 
files 

 Newer file systems are smarter 

 Newer storage devices (SSDs) change the constraints, but not 
the basic data structure 
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File system consistency 

 Both i-nodes and file blocks are cached in memory 

 The “sync” command forces memory-resident disk 
information to be written to disk 
 system does a sync every few seconds 

 A crash or power failure between sync’s can leave an 
inconsistent disk 

 You could reduce the frequency of problems by reducing 
caching, but performance would suffer big-time 
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What do you do after a crash? 

 Run a program called “fsck” to try to fix any consistency 
problems 

 fsck has to scan the entire disk 
 as disks are getting bigger, fsck is taking longer and longer 

 modern disks: fsck can take a full day! 

 Newer file systems try to help here 
 are more clever about the order in which writes happen, and where 

writes are directed 

 e.g., Journaling file system:  collect recent writes in a log called a 
journal.  On crash, run through journal to replay against file system. 
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fsck i-check 
(consistency of the flat file system) 

 Is each block on exactly one list? 
 create a bit vector with as many entries as there are blocks 

 follow the free list and each i-node block list 

 when a block is encountered, examine its bit 

 If the bit was 0, set it to 1 

 if the bit was already 1 

– if the block is both in a file and on the free list, remove it from 
the free list and cross your fingers 

– if the block is in two files, call support! 

 if there are any 0’s left at the end, put those blocks on the free list 
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fsck d-check 
(consistency of the directory file system) 

 Do the directories form a tree? 

 Does the link count of each file equal the number of 
directories linked to it? 
 I will spare you the details 

 uses a zero-initialized vector of counters, one per i-node 

 walk the tree, then visit every i-node  
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Protection 

 Objects:  individual files 

 Principals:  owner/group/world 

 Actions:  read/write/execute 

 

 This is pretty simple and rigid, but it has proven to be about 
what we can handle! 
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File sharing 

 Each user has a “channel table” (or “per-user open file table”) 

 Each entry in the channel table is a pointer to an entry in the 
system-wide “open file table” 

 Each entry in the open file table contains a file offset (file 
pointer) and a pointer to an entry in the “memory-resident i-
node table” 

 If a process opens an already-open file, a new open file table 
entry is created (with a new file offset), pointing to the same 
entry in the memory-resident i-node table 

 If a process forks, the child gets a copy of the channel table 
(and thus the same file offset) 
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Process 1 Process 2 (child) Process 3 

channel 
table 

channel 
table 

channel 
table 

open file table file offset 

memory-resident i-
node table 

file offset 

file buffer cache 

disk 
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