
University of Washington

Computer Systems
CSE 410 Spring 2012
20 – OS Introduction & Structure

21 May 2012 OS Introduction & Structure 1

Slides adapted from CSE 451 material by Gribble, Lazowska, Levy, and Zahorjan

University of Washington

What is an Operating System?

 Answers:
 I don't know

 Nobody knows

 The book claims to know – read Chapter 1

 They’re programs – big hairy programs

 The Linux source has over 1.7M lines of C

21 May 2012 OS Introduction & Structure 2

University of Washington

What is an Operating System?

 Answers:
 I don't know

 Nobody knows

 The book claims to know – read Chapter 1

 They’re programs – big hairy programs

 The Linux source has over 1.7M lines of C

Okay. What are some goals of an OS?

21 May 2012 OS Introduction & Structure 3

University of Washington

The traditional picture

 “The OS is everything you don’t need to write in order to run
your application”

 This depiction invites you to think of the OS as a library
 In some ways, it is:

 all operations on I/O devices require OS calls (syscalls)

 In other ways, it isn't:

 you use the CPU/memory without OS calls

 it intervenes without having been explicitly called

Applications

OS

Hardware

21 May 2012 OS Introduction & Structure 4

University of Washington

The OS and hardware

 An OS mediates programs’ access to hardware resources
(sharing and protection)
 computation (CPU)

 volatile storage (memory) and persistent storage (disk, etc.)

 network communications (TCP/IP stacks, Ethernet cards, etc.)

 input/output devices (keyboard, display, sound card, etc.)

 The OS abstracts hardware into logical resources and well-
defined interfaces to those resources (ease of use)
 processes (CPU, memory)

 files (disk)

 programs (sequences of instructions)

 sockets (network)

21 May 2012 OS Introduction & Structure 5

University of Washington

Why bother with an OS?

 Application benefits
 programming simplicity

 see high-level abstractions (files) instead of low-level hardware
details (device registers)

 abstractions are reusable across many programs
 portability (across machine configurations or architectures)

 device independence: 3com card or Intel card?

 User benefits
 safety

 program “sees” its own virtual machine, thinks it “owns” the
computer

 OS protects programs from each other
 OS fairly multiplexes resources across programs

 efficiency (cost and speed)
 share one computer across many users
 concurrent execution of multiple programs

21 May 2012 OS Introduction & Structure 6

University of Washington

The major OS issues

 structure: how is the OS organized?

 sharing: how are resources shared across users?

 naming: how are resources named (by users or programs)?

 security: how is the integrity of the OS and its resources
ensured?

 protection: how is one user/program protected from another?

 performance: how do we make it all go fast?

 reliability: what happens if something goes wrong (either with
hardware or with a program)?

 extensibility: can we add new features?

 communication: how do programs exchange information,
including across a network?

21 May 2012 7 OS Introduction & Structure

University of Washington

More OS issues…

 concurrency: how are parallel activities (computation and I/O)
created and controlled?

 scale: what happens as demands or resources increase?

 persistence: how do you make data last longer than program
executions?

 distribution: how do multiple computers interact with each
other?

 accounting: how do we keep track of resource usage, and
perhaps charge for it?

There are tradeoffs, not right and wrong!

21 May 2012 8 OS Introduction & Structure

University of Washington

Architectural features affecting OS’s

 These features were built primarily to support OS’s:
 timer (clock) operation

 synchronization instructions (e.g., atomic test-and-set)

 memory protection

 I/O control operations

 interrupts and exceptions

 protected modes of execution (kernel vs. user)

 privileged instructions

 system calls (and software interrupts)

 virtualization architectures

21 May 2012 OS Introduction & Structure 9

University of Washington

Privileged instructions

 some instructions are restricted to the OS
 known as privileged instructions

 e.g., only the OS can:
 directly access I/O devices (disks, network cards)

 why?

 manipulate memory state management

 page table pointers, TLB loads, etc.

 why?

 manipulate special ‘mode bits’

 interrupt priority level

 why?

21 May 2012 OS Introduction & Structure 10

University of Washington

OS protection

 So how does the processor know if a privileged instruction
should be executed?
 the architecture must support at least two modes of operation: kernel

mode and user mode

 VAX, x86 support 4 protection modes

 mode is set by status bit in a protected processor register

 user programs execute in user mode

 OS executes in kernel (privileged) mode (OS == kernel)

 Privileged instructions can only be executed in kernel
(privileged) mode
 what happens if code running in user mode attempts to execute a

privileged instruction?

21 May 2012 OS Introduction & Structure 11

University of Washington

Crossing protection boundaries

 So how do user programs do something privileged?
 e.g., how can you write to a disk if you can’t execute an I/O

instructions?

 User programs must call an OS procedure – that is, get the OS
to do it for them
 OS defines a set of system calls

 User-mode program executes system call instruction (int on x86)

 Syscall (int) instruction

 Like a protected procedure call

 We’ve seen this earlier, but a few more details…

21 May 2012 12 OS Introduction & Structure

University of Washington

System calls

 The syscall instruction atomically:
 Saves the current PC

 Sets the execution mode to privileged

 Sets the PC to a handler address

 With that, it’s a lot like a local procedure call
 Caller puts arguments in a place callee expects (registers or stack)

 One of the args is a syscall number, indicating which OS function to
invoke

 Callee (OS) saves caller’s state (registers, other control state) so it can use
the CPU

 OS function code runs

 OS must verify caller’s arguments (e.g., pointers)

 OS returns using a special instruction

 Automatically sets PC to return address and sets execution mode to
user

21 May 2012 13 OS Introduction & Structure

University of Washington

A kernel crossing illustrated

user mode

kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC
PC = trap handler address
Enter kernel mode

Save app state
Verify syscall number
Find sys_read() handler in vector table

trap handler

sys_read() kernel routine

Verify args
Initiate read
Choose next process to run
Setup return values
Restore app state

ERET instruction

PC = saved PC
Enter user mode

21 May 2012 OS Introduction & Structure 14

University of Washington

OS structure

 The OS sits between application programs and the hardware
 it mediates access and abstracts away ugliness

 programs request services via traps or exceptions

 devices request attention via interrupts

OS

P1

P2 P3

P4

D1

D2 D3
D4

trap or
exception

interrupt

dispatch

start i/o

21 May 2012 OS Introduction & Structure 15

University of Washington

Hardware (CPU, devices)

Application Interface (API)

Hardware Abstraction Layer

File

Systems

Memory

Manager

Process

Manager

Network

Support

Device

Drivers

Interrupt

Handlers

Boot &

Init

Java Photoshop Firefox

O
p

er
at

in
g

 S
y

st
em

 P
o

rtab
le

U
se

r
A

p
p
s

Acrobat

The Classic Diagram…

21 May 2012 16 OS Introduction & Structure

University of Washington

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

But reality isn’t always that simple…

21 May 2012 17 OS Introduction & Structure

University of Washington

Major OS components

 processes

 memory

 I/O

 secondary storage

 file systems

 protection

 shells (command interpreter, or OS UI)

 GUI

 networking

21 May 2012 18 OS Introduction & Structure

University of Washington

Process management

 An OS executes many kinds of activities:
 users’ programs

 batch jobs or scripts

 system programs

 print spoolers, name servers, file servers, network daemons, …

 Each of these activities is encapsulated in a process
 a process includes the execution context

 PC, registers, VM, OS resources (e.g., open files), etc…

 plus the program itself (code and data)

 the OS’s process module manages these processes

 creation, destruction, scheduling, …

21 May 2012 OS Introduction & Structure 19

University of Washington

Program/processor/process

 Note that a program is totally passive
 just bytes on a disk that encode instructions to be run

 A process is an instance of a program being executed by a
(real or virtual) processor
 at any instant, there may be many processes running copies of the

same program (e.g., an editor); each process is separate and (usually)
independent

 Linux: ps -auwwx to list all processes

 process A process B

code
stack PC
registers

code
stack PC
registers

page tables

resources

page tables

resources

21 May 2012 OS Introduction & Structure 20

University of Washington

States of a user process

running

ready

blocked

trap or exception

interrupt dispatch

interrupt

21 May 2012 OS Introduction & Structure 21

University of Washington

Process operations

 The OS provides the following kinds operations on processes
(i.e., the process abstraction interface):
 create a process

 delete a process

 suspend a process

 resume a process

 clone a process

 inter-process communication

 inter-process synchronization

 create/delete a child process (subprocess)

21 May 2012 22 OS Introduction & Structure

University of Washington

Memory management

 The primary memory is the directly accessed storage for the
CPU
 programs must be stored in memory to execute

 memory access is fast

 but memory doesn’t survive power failures

 OS must:
 allocate memory space for programs (explicitly and implicitly)

 deallocate space when needed by rest of system

 maintain mappings from physical to virtual memory

 through page tables

 decide how much memory to allocate to each process

 a policy decision

 decide when to remove a process from memory

 also policy

21 May 2012 23 OS Introduction & Structure

University of Washington

I/O

 A big chunk of the OS kernel deals with I/O
 hundreds of thousands of lines in NT (Windows)

 The OS provides a standard interface between programs
(user or system) and devices
 file system (disk), sockets (network), frame buffer (video)

 Device drivers are the routines that interact with specific
device types
 encapsulates device-specific knowledge

 e.g., how to initialize a device, how to request I/O, how to handle
interrupts or errors

 examples: SCSI device drivers, Ethernet card drivers, video card
drivers, sound card drivers, …

 Note: Windows has ~35,000 device drivers!

21 May 2012 24 OS Introduction & Structure

University of Washington

Secondary storage

 Secondary storage (disk, tape) is persistent memory
 often magnetic media, survives power failures (hopefully)

 Routines that interact with disks are typically at a very low
level in the OS
 used by many components (file system, VM, …)

 handle scheduling of disk operations, head movement, error handling,
and often management of space on disks

 Usually independent of file system
 although there may be cooperation

 file system knowledge of device details can help optimize performance

 e.g., place related files close together on disk

21 May 2012 OS Introduction & Structure 25

University of Washington

File systems

 Secondary storage devices are crude and awkward
 e.g., “write 4096 byte block to sector 12”

 File system: a convenient abstraction
 defines logical objects like files and directories

 hides details about where on disk files live

 as well as operations on objects like read and write

 read/write byte ranges instead of blocks

 A file is the basic unit of long-term storage
 file = named collection of persistent information

 A directory is just a special kind of file
 directory = named file that contains names of other files and metadata

about those files (e.g., file size)

 Note: Sequential byte stream is only one possibility!

21 May 2012 26 OS Introduction & Structure

University of Washington

File system operations

 The file system interface defines standard operations:
 file (or directory) creation and deletion

 manipulation of files and directories (read, write, extend, rename,
protect)

 copy

 lock

 File systems also provide higher level services
 accounting and quotas

 backup (must be incremental and online!)

 (sometimes) indexing or search

 (sometimes) file versioning

21 May 2012 27 OS Introduction & Structure

University of Washington

Protection

 Protection is a general mechanism used throughout the OS
 all resources needed to be protected

 memory

 processes

 files

 devices

 CPU time

 …

 protection mechanisms help to detect and contain unintentional errors,
as well as preventing malicious destruction

21 May 2012 OS Introduction & Structure 28

University of Washington

Command interpreter (shell)

 A particular program that handles the interpretation of users’
commands and helps to manage processes
 user input may be from keyboard (command-line interface), from script

files, or from the mouse (GUIs)

 allows users to launch and control new programs

 On some systems, command interpreter may be a standard
part of the OS (mostly old/historical or tiny systems)

 On others, it’s just non-privileged code that provides an
interface to the user
 e.g., bash/csh/tcsh/zsh on UNIX

 On others, there may be no command language
 e.g., classic MacOS (pre-OS X)

21 May 2012 29 OS Introduction & Structure

University of Washington

OS structure

 It’s not always clear how to stitch OS modules together:

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

21 May 2012 OS Introduction & Structure 30

University of Washington

OS structure

 An OS consists of all of these components, plus:
 many other components

 system programs (privileged and non-privileged)

 e.g., bootstrap code, the init program, …

 Major issue:
 how do we organize all this?

 what are all of the code modules, and where do they exist?

 how do they cooperate?

 Massive software engineering and design problem
 design a large, complex program that:

 performs well, is reliable, is extensible, is backwards compatible, …

 we won’t be able to go into detail in the remaining few classes (alas…)

21 May 2012 OS Introduction & Structure 31

University of Washington

Early structure: Monolithic

 Traditionally, OS’s (like UNIX) were built as a monolithic
entity:

everything

user programs

hardware

OS

21 May 2012 OS Introduction & Structure 32

University of Washington

Monolithic design

 Major advantage:
 cost of module interactions is low (procedure call)

 Disadvantages:
 hard to understand

 hard to modify

 unreliable (no isolation between system modules)

 hard to maintain

 What is the alternative?
 find a way to organize the OS in order to simplify its design and

implementation

21 May 2012 OS Introduction & Structure 33

University of Washington

Layering

 The traditional approach is layering
 implement OS as a set of layers

 each layer presents an enhanced ‘virtual machine’ to the layer above

 The first description of this approach was Dijkstra’s THE system
 Layer 5: Job Managers

 Execute users’ programs

 Layer 4: Device Managers
 Handle devices and provide buffering

 Layer 3: Console Manager
 Implements virtual consoles

 Layer 2: Page Manager
 Implements virtual memories for each process

 Layer 1: Kernel
 Implements a virtual processor for each process

 Layer 0: Hardware

 Each layer can be tested and verified independently

21 May 2012 OS Introduction & Structure 34

University of Washington

Problems with layering

 Imposes hierarchical structure
 but real systems are more complex:

 file system requires VM services (buffers)

 VM would like to use files for its backing store

 strict layering isn’t flexible enough

 Poor performance
 each layer crossing has overhead associated with it

 Disjunction between model and reality
 systems modeled as layers, but not really built that way

21 May 2012 OS Introduction & Structure 35

University of Washington

Hardware Abstraction Layer

 An example of layering in modern
operating systems

 Goal: separates hardware-specific
routines from the “core” OS
 Provides portability

 Improves readability

Core OS
(file system,
scheduler,

system calls)

Hardware Abstraction
Layer

(device drivers,
assembly routines)

21 May 2012 OS Introduction & Structure 36

University of Washington

Microkernels

 Popular in the late 80’s, early 90’s
 recent resurgence of popularity

 Goal:
 minimize what goes in kernel

 organize rest of OS as user-level processes

 This results in:
 better reliability (isolation between components)

 ease of extension and customization

 poor performance (user/kernel boundary crossings)

 First microkernel system was Hydra (CMU, 1970)
 Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS X (Apple), in

some ways NT (Microsoft)

21 May 2012 OS Introduction & Structure 37

University of Washington

38

Microkernel structure illustrated

hardware

microkernel

system
processes

user
processes

low-level VM
communication

protection

processor
control

file system

threads

network

scheduling
paging

firefox powerpoint

apache

use
r m

od
e

K
e
rne

l
m

od
e

photoshop
itunes word

21 May 2012 OS Introduction & Structure 38

University of Washington

From Andy Tanenbaum 21 May 2012 OS Introduction & Structure 39

University of Washington

Summary & Next

• Summary
– OS design has been a evolutionary process of trial and error. Probably

more error than success

– Successful OS designs have run the spectrum from monolithic, to
layered, to micro kernels, to virtual machine monitors

– The role and design of an OS are still evolving

– It is impossible to pick one “correct” way to structure an OS

• Next…
– Processes and threads, one of the most fundamental pieces in an OS

– What these are, what do they do, and how do they do it

21 May 2012 40 OS Introduction & Structure

