
University of Washington

Computer Systems
CSE 410 Spring 2012
20 – OS Introduction & Structure

21 May 2012 OS Introduction & Structure 1

Slides adapted from CSE 451 material by Gribble, Lazowska, Levy, and Zahorjan

University of Washington

What is an Operating System?

 Answers:
 I don't know

 Nobody knows

 The book claims to know – read Chapter 1

 They’re programs – big hairy programs

 The Linux source has over 1.7M lines of C

21 May 2012 OS Introduction & Structure 2

University of Washington

What is an Operating System?

 Answers:
 I don't know

 Nobody knows

 The book claims to know – read Chapter 1

 They’re programs – big hairy programs

 The Linux source has over 1.7M lines of C

Okay. What are some goals of an OS?

21 May 2012 OS Introduction & Structure 3

University of Washington

The traditional picture

 “The OS is everything you don’t need to write in order to run
your application”

 This depiction invites you to think of the OS as a library
 In some ways, it is:

 all operations on I/O devices require OS calls (syscalls)

 In other ways, it isn't:

 you use the CPU/memory without OS calls

 it intervenes without having been explicitly called

Applications

OS

Hardware

21 May 2012 OS Introduction & Structure 4

University of Washington

The OS and hardware

 An OS mediates programs’ access to hardware resources
(sharing and protection)
 computation (CPU)

 volatile storage (memory) and persistent storage (disk, etc.)

 network communications (TCP/IP stacks, Ethernet cards, etc.)

 input/output devices (keyboard, display, sound card, etc.)

 The OS abstracts hardware into logical resources and well-
defined interfaces to those resources (ease of use)
 processes (CPU, memory)

 files (disk)

 programs (sequences of instructions)

 sockets (network)

21 May 2012 OS Introduction & Structure 5

University of Washington

Why bother with an OS?

 Application benefits
 programming simplicity

 see high-level abstractions (files) instead of low-level hardware
details (device registers)

 abstractions are reusable across many programs
 portability (across machine configurations or architectures)

 device independence: 3com card or Intel card?

 User benefits
 safety

 program “sees” its own virtual machine, thinks it “owns” the
computer

 OS protects programs from each other
 OS fairly multiplexes resources across programs

 efficiency (cost and speed)
 share one computer across many users
 concurrent execution of multiple programs

21 May 2012 OS Introduction & Structure 6

University of Washington

The major OS issues

 structure: how is the OS organized?

 sharing: how are resources shared across users?

 naming: how are resources named (by users or programs)?

 security: how is the integrity of the OS and its resources
ensured?

 protection: how is one user/program protected from another?

 performance: how do we make it all go fast?

 reliability: what happens if something goes wrong (either with
hardware or with a program)?

 extensibility: can we add new features?

 communication: how do programs exchange information,
including across a network?

21 May 2012 7 OS Introduction & Structure

University of Washington

More OS issues…

 concurrency: how are parallel activities (computation and I/O)
created and controlled?

 scale: what happens as demands or resources increase?

 persistence: how do you make data last longer than program
executions?

 distribution: how do multiple computers interact with each
other?

 accounting: how do we keep track of resource usage, and
perhaps charge for it?

There are tradeoffs, not right and wrong!

21 May 2012 8 OS Introduction & Structure

University of Washington

Architectural features affecting OS’s

 These features were built primarily to support OS’s:
 timer (clock) operation

 synchronization instructions (e.g., atomic test-and-set)

 memory protection

 I/O control operations

 interrupts and exceptions

 protected modes of execution (kernel vs. user)

 privileged instructions

 system calls (and software interrupts)

 virtualization architectures

21 May 2012 OS Introduction & Structure 9

University of Washington

Privileged instructions

 some instructions are restricted to the OS
 known as privileged instructions

 e.g., only the OS can:
 directly access I/O devices (disks, network cards)

 why?

 manipulate memory state management

 page table pointers, TLB loads, etc.

 why?

 manipulate special ‘mode bits’

 interrupt priority level

 why?

21 May 2012 OS Introduction & Structure 10

University of Washington

OS protection

 So how does the processor know if a privileged instruction
should be executed?
 the architecture must support at least two modes of operation: kernel

mode and user mode

 VAX, x86 support 4 protection modes

 mode is set by status bit in a protected processor register

 user programs execute in user mode

 OS executes in kernel (privileged) mode (OS == kernel)

 Privileged instructions can only be executed in kernel
(privileged) mode
 what happens if code running in user mode attempts to execute a

privileged instruction?

21 May 2012 OS Introduction & Structure 11

University of Washington

Crossing protection boundaries

 So how do user programs do something privileged?
 e.g., how can you write to a disk if you can’t execute an I/O

instructions?

 User programs must call an OS procedure – that is, get the OS
to do it for them
 OS defines a set of system calls

 User-mode program executes system call instruction (int on x86)

 Syscall (int) instruction

 Like a protected procedure call

 We’ve seen this earlier, but a few more details…

21 May 2012 12 OS Introduction & Structure

University of Washington

System calls

 The syscall instruction atomically:
 Saves the current PC

 Sets the execution mode to privileged

 Sets the PC to a handler address

 With that, it’s a lot like a local procedure call
 Caller puts arguments in a place callee expects (registers or stack)

 One of the args is a syscall number, indicating which OS function to
invoke

 Callee (OS) saves caller’s state (registers, other control state) so it can use
the CPU

 OS function code runs

 OS must verify caller’s arguments (e.g., pointers)

 OS returns using a special instruction

 Automatically sets PC to return address and sets execution mode to
user

21 May 2012 13 OS Introduction & Structure

University of Washington

A kernel crossing illustrated

user mode

kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC
PC = trap handler address
Enter kernel mode

Save app state
Verify syscall number
Find sys_read() handler in vector table

trap handler

sys_read() kernel routine

Verify args
Initiate read
Choose next process to run
Setup return values
Restore app state

ERET instruction

PC = saved PC
Enter user mode

21 May 2012 OS Introduction & Structure 14

University of Washington

OS structure

 The OS sits between application programs and the hardware
 it mediates access and abstracts away ugliness

 programs request services via traps or exceptions

 devices request attention via interrupts

OS

P1

P2 P3

P4

D1

D2 D3
D4

trap or
exception

interrupt

dispatch

start i/o

21 May 2012 OS Introduction & Structure 15

University of Washington

Hardware (CPU, devices)

Application Interface (API)

Hardware Abstraction Layer

File

Systems

Memory

Manager

Process

Manager

Network

Support

Device

Drivers

Interrupt

Handlers

Boot &

Init

Java Photoshop Firefox

O
p

er
at

in
g

 S
y

st
em

 P
o

rtab
le

U
se

r
A

p
p
s

Acrobat

The Classic Diagram…

21 May 2012 16 OS Introduction & Structure

University of Washington

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

But reality isn’t always that simple…

21 May 2012 17 OS Introduction & Structure

University of Washington

Major OS components

 processes

 memory

 I/O

 secondary storage

 file systems

 protection

 shells (command interpreter, or OS UI)

 GUI

 networking

21 May 2012 18 OS Introduction & Structure

University of Washington

Process management

 An OS executes many kinds of activities:
 users’ programs

 batch jobs or scripts

 system programs

 print spoolers, name servers, file servers, network daemons, …

 Each of these activities is encapsulated in a process
 a process includes the execution context

 PC, registers, VM, OS resources (e.g., open files), etc…

 plus the program itself (code and data)

 the OS’s process module manages these processes

 creation, destruction, scheduling, …

21 May 2012 OS Introduction & Structure 19

University of Washington

Program/processor/process

 Note that a program is totally passive
 just bytes on a disk that encode instructions to be run

 A process is an instance of a program being executed by a
(real or virtual) processor
 at any instant, there may be many processes running copies of the

same program (e.g., an editor); each process is separate and (usually)
independent

 Linux: ps -auwwx to list all processes

 process A process B

code
stack PC
registers

code
stack PC
registers

page tables

resources

page tables

resources

21 May 2012 OS Introduction & Structure 20

University of Washington

States of a user process

running

ready

blocked

trap or exception

interrupt dispatch

interrupt

21 May 2012 OS Introduction & Structure 21

University of Washington

Process operations

 The OS provides the following kinds operations on processes
(i.e., the process abstraction interface):
 create a process

 delete a process

 suspend a process

 resume a process

 clone a process

 inter-process communication

 inter-process synchronization

 create/delete a child process (subprocess)

21 May 2012 22 OS Introduction & Structure

University of Washington

Memory management

 The primary memory is the directly accessed storage for the
CPU
 programs must be stored in memory to execute

 memory access is fast

 but memory doesn’t survive power failures

 OS must:
 allocate memory space for programs (explicitly and implicitly)

 deallocate space when needed by rest of system

 maintain mappings from physical to virtual memory

 through page tables

 decide how much memory to allocate to each process

 a policy decision

 decide when to remove a process from memory

 also policy

21 May 2012 23 OS Introduction & Structure

University of Washington

I/O

 A big chunk of the OS kernel deals with I/O
 hundreds of thousands of lines in NT (Windows)

 The OS provides a standard interface between programs
(user or system) and devices
 file system (disk), sockets (network), frame buffer (video)

 Device drivers are the routines that interact with specific
device types
 encapsulates device-specific knowledge

 e.g., how to initialize a device, how to request I/O, how to handle
interrupts or errors

 examples: SCSI device drivers, Ethernet card drivers, video card
drivers, sound card drivers, …

 Note: Windows has ~35,000 device drivers!

21 May 2012 24 OS Introduction & Structure

University of Washington

Secondary storage

 Secondary storage (disk, tape) is persistent memory
 often magnetic media, survives power failures (hopefully)

 Routines that interact with disks are typically at a very low
level in the OS
 used by many components (file system, VM, …)

 handle scheduling of disk operations, head movement, error handling,
and often management of space on disks

 Usually independent of file system
 although there may be cooperation

 file system knowledge of device details can help optimize performance

 e.g., place related files close together on disk

21 May 2012 OS Introduction & Structure 25

University of Washington

File systems

 Secondary storage devices are crude and awkward
 e.g., “write 4096 byte block to sector 12”

 File system: a convenient abstraction
 defines logical objects like files and directories

 hides details about where on disk files live

 as well as operations on objects like read and write

 read/write byte ranges instead of blocks

 A file is the basic unit of long-term storage
 file = named collection of persistent information

 A directory is just a special kind of file
 directory = named file that contains names of other files and metadata

about those files (e.g., file size)

 Note: Sequential byte stream is only one possibility!

21 May 2012 26 OS Introduction & Structure

University of Washington

File system operations

 The file system interface defines standard operations:
 file (or directory) creation and deletion

 manipulation of files and directories (read, write, extend, rename,
protect)

 copy

 lock

 File systems also provide higher level services
 accounting and quotas

 backup (must be incremental and online!)

 (sometimes) indexing or search

 (sometimes) file versioning

21 May 2012 27 OS Introduction & Structure

University of Washington

Protection

 Protection is a general mechanism used throughout the OS
 all resources needed to be protected

 memory

 processes

 files

 devices

 CPU time

 …

 protection mechanisms help to detect and contain unintentional errors,
as well as preventing malicious destruction

21 May 2012 OS Introduction & Structure 28

University of Washington

Command interpreter (shell)

 A particular program that handles the interpretation of users’
commands and helps to manage processes
 user input may be from keyboard (command-line interface), from script

files, or from the mouse (GUIs)

 allows users to launch and control new programs

 On some systems, command interpreter may be a standard
part of the OS (mostly old/historical or tiny systems)

 On others, it’s just non-privileged code that provides an
interface to the user
 e.g., bash/csh/tcsh/zsh on UNIX

 On others, there may be no command language
 e.g., classic MacOS (pre-OS X)

21 May 2012 29 OS Introduction & Structure

University of Washington

OS structure

 It’s not always clear how to stitch OS modules together:

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

21 May 2012 OS Introduction & Structure 30

University of Washington

OS structure

 An OS consists of all of these components, plus:
 many other components

 system programs (privileged and non-privileged)

 e.g., bootstrap code, the init program, …

 Major issue:
 how do we organize all this?

 what are all of the code modules, and where do they exist?

 how do they cooperate?

 Massive software engineering and design problem
 design a large, complex program that:

 performs well, is reliable, is extensible, is backwards compatible, …

 we won’t be able to go into detail in the remaining few classes (alas…)

21 May 2012 OS Introduction & Structure 31

University of Washington

Early structure: Monolithic

 Traditionally, OS’s (like UNIX) were built as a monolithic
entity:

everything

user programs

hardware

OS

21 May 2012 OS Introduction & Structure 32

University of Washington

Monolithic design

 Major advantage:
 cost of module interactions is low (procedure call)

 Disadvantages:
 hard to understand

 hard to modify

 unreliable (no isolation between system modules)

 hard to maintain

 What is the alternative?
 find a way to organize the OS in order to simplify its design and

implementation

21 May 2012 OS Introduction & Structure 33

University of Washington

Layering

 The traditional approach is layering
 implement OS as a set of layers

 each layer presents an enhanced ‘virtual machine’ to the layer above

 The first description of this approach was Dijkstra’s THE system
 Layer 5: Job Managers

 Execute users’ programs

 Layer 4: Device Managers
 Handle devices and provide buffering

 Layer 3: Console Manager
 Implements virtual consoles

 Layer 2: Page Manager
 Implements virtual memories for each process

 Layer 1: Kernel
 Implements a virtual processor for each process

 Layer 0: Hardware

 Each layer can be tested and verified independently

21 May 2012 OS Introduction & Structure 34

University of Washington

Problems with layering

 Imposes hierarchical structure
 but real systems are more complex:

 file system requires VM services (buffers)

 VM would like to use files for its backing store

 strict layering isn’t flexible enough

 Poor performance
 each layer crossing has overhead associated with it

 Disjunction between model and reality
 systems modeled as layers, but not really built that way

21 May 2012 OS Introduction & Structure 35

University of Washington

Hardware Abstraction Layer

 An example of layering in modern
operating systems

 Goal: separates hardware-specific
routines from the “core” OS
 Provides portability

 Improves readability

Core OS
(file system,
scheduler,

system calls)

Hardware Abstraction
Layer

(device drivers,
assembly routines)

21 May 2012 OS Introduction & Structure 36

University of Washington

Microkernels

 Popular in the late 80’s, early 90’s
 recent resurgence of popularity

 Goal:
 minimize what goes in kernel

 organize rest of OS as user-level processes

 This results in:
 better reliability (isolation between components)

 ease of extension and customization

 poor performance (user/kernel boundary crossings)

 First microkernel system was Hydra (CMU, 1970)
 Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS X (Apple), in

some ways NT (Microsoft)

21 May 2012 OS Introduction & Structure 37

University of Washington

38

Microkernel structure illustrated

hardware

microkernel

system
processes

user
processes

low-level VM
communication

protection

processor
control

file system

threads

network

scheduling
paging

firefox powerpoint

apache

use
r m

od
e

K
e
rne

l
m

od
e

photoshop
itunes word

21 May 2012 OS Introduction & Structure 38

University of Washington

From Andy Tanenbaum 21 May 2012 OS Introduction & Structure 39

University of Washington

Summary & Next

• Summary
– OS design has been a evolutionary process of trial and error. Probably

more error than success

– Successful OS designs have run the spectrum from monolithic, to
layered, to micro kernels, to virtual machine monitors

– The role and design of an OS are still evolving

– It is impossible to pick one “correct” way to structure an OS

• Next…
– Processes and threads, one of the most fundamental pieces in an OS

– What these are, what do they do, and how do they do it

21 May 2012 40 OS Introduction & Structure

