University of Washington

Computer Systems

CSE 410 Spring 2012
3 - Integers

02 April 2012 Integers 1

University of Washington

Today’s Topics

m Representation of integers: unsigned and signed
m Casting

m Arithmetic and shifting

m Sign extension

m Reading: Bryant/O’Hallaron sec. 2.2-2.3

02 April 2012 Integers 2

University of Washington

Encoding Integers

m The hardware (and C) supports two flavors of integers:
= unsigned — only the non-negatives
= signed — both negatives and non-negatives

m There are only 2% distinct bit patterns of W bits, so...

= Can't represent all the integers
" Unsigned values are 0 ... 2W-1
= Signed values are -2W-1 ., 2W-1]

02 April 2012 Integers 3

University of Washington

Unsigned Integers

m Unsigned values are just what you expect
" b,b.b.b,bb,bby=b,27+b.25+b.25+ ... + b2 + b,2°

. ' ide: N-1— 9N _
Interesting aside: 1+2+4+8+...+2 2N -1 00111111 o=
+00000001 | |+ 1
m You add/subtract them using the normal 01000000 64

“carry/borrow” rules, just in binary

m An important use of unsigned integers in C is pointers
" There are no negative memory addresses

02 April 2012 Integers

University of Washington

Signed Integers

m Let's do the natural thing for the positives
"= They correspond to the unsigned integers of the same value
= Example (8 bits): 0x00 =0, 0x01 =1, ..., Ox7F = 127
m But, we need to let about half of them be negative
= Use the high order bit to indicate 'negative'
= Call it “the sign bit”
= Examples (8 bits):
= 0x00 = 00000000, is non-negative, because the sign bitis 0
= Ox7F=01111111, is non-negative
= 0x80 = 10000000, is negative

02 April 2012 Integers 5

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?

= Possibility 1: 10000001,
Use the MSB for “+ or -”, and the other bits to give magnitude

02 April 2012 Integers 6

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?

= Possibility 1: 10000001,
Use the MSB for “+ or -”, and the other bits to give magnitude
(Unfortunate side effect: there are two representations of 0!)

02 April 2012 Integers 7

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?

= Possibility 1: 10000001,
Use the MSB for “+ or -”, and the other bits to give magnitude
Another problem: math is cumbersome

" 4-31=4+(-3)

02 April 2012 Integers 8

University of Washington

Ones’ Complement Negatives

m How should we represent -1 in binary?

= Possibility 2: 11111110,
Negative numbers: bitwise complements of positive numbers
It would be handy if we could use the same hardware adder to add
signed integers as unsigned

02 April 2012 Integers 9

University of Washington

Ones’ Complement Negatives

m How should we represent -1 in binary?

= Possibility 2: 11111110,
Negative numbers: bitwise complements of positive numbers

= Solves the arithmetic problem

Add Invert, add, add carry Invert and add
4 0100 4 0100 — 4 1011
+ 3 + 0011 -3 + 1100 + 3 + 0011
=7 =0111 =1 1 0000 — 1 1110
add carry: +1
= 0001

end-around carry

02 April 2012 Integers 10

Ones’ Complement Negatives

m How should we represent -1 in binary?

= Possibility 2: 11111110,
Negative numbers: bitwise complements of positive numbers
Use the same hardware adder to add signed integers as unsigned (but
we have to keep track of the end-around carry bit)

= Why does it work?
" The ones’ complement of a 4-bit positive numbery
is 1111, -
= 0111=7,,
- 1111,-0111, = 1000, = -7,
= 1111, is 1 less than 10000, = 24 -1
= —yis represented by (24-1) -y

02 April 2012 Integers 11

University of Washington

Ones’ Complement Negatives

m How should we represent -1 in binary?

= Possibility 2: 11111110,
Negative numbers: bitwise complements of positive numbers
(But there are still two representations of 0!)

02 April 2012 Integers 12

University of Washington

Two's Complement Negatives

m How should we represent -1 in binary?

= Possibility 3: 11111111,
Bitwise complement plus one
(Only one zero)

02 April 2012 Integers 13

Two's Complement Negatives

m How should we represent -1 in binary?

= Possibility 3: 11111111,
Bitwise complement plus one
(Only one zero)
= Simplifies arithmetic
Use the same hardware adder to add signed integers as unsigned
(simple addition; discard the highest carry bit)

Add Invert and add Invert and add
— 4 1100

+ 3 + 0011

7 =0I11 =1 1 0001 — 1 1111
drop carry = 0001

02 April 2012 Integers 14

Two's Complement Negatives

m How should we represent -1 in binary?

= Two’s complement: Bitwise complement plus one

= Why does it work?

= Recall: The ones’ complement of a b-bit positive numbery
is(2b—1)-vy

= Two’s complement adds one to the bitwise complement,
thus, -y is 2 —y

= —y and 2 -y are equal mod 2°
(have the same remainder when divided by 2°)

= Ignoring carries is equivalent to doing arithmetic mod 2P

02 April 2012 Integers 15

University of Washington

Two's Complement Negatives

m How should we represent -1 in binary?

= Two’s complement: Bitwise complement plus one

= What should the 8-bit representation of -1 be?
00000001

00000000

00000010 00000011

00000000 00000000

02 April 2012 Integers 16

University of Washington

Unsigned & Signed Numeric Values

X Unsigned] Signed . Both signed and unsigned integers
0000 g 0 have limits
0001 1 1 « If you compute a number that is too
0010 2 2 big, you wrap: 6+4=? 15U +2U="?
0011 3 3
0100 2 2 « If you compute a number that is too
5101 = . small, you wrap: -7-3=? 0U-2U="
0110 6 6 « Answers are only correct mod 2°
0111 7 7
1000 8 —3 « The CPU may be capable of “throwing
1001 S —7 an exception” for overflow on signed
1010 10 —6 values
1011 11 -5
1100 12 4 o Itwon't for unsigned
1101 13 —3 « But Cand Java just cruise along silently
1110 14 —2 when overflow occurs...
1111 15 -1

02 April 2012 Integers 17

Mapping Signed < Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 ' +16 ' 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

02 April 2012 Integers 18

University of Washington

Numeric Ranges

m Unsigned Values

= UMin

= 000...0

= UMax

= 111.1

m Two’s Complement Values

2" -1

Values for W =16

= TMin

= 100...0

= TMax

= 011...1

m Other Values
" Minus 1

= 111..1 OxFFFFFFFF (32 bits)

2wl—1

Decimal Hex Binary
UMax 65535(FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768(80 00| 10000000 00000000
-1 -1 FF FF| 11111111 11111111
0 O 00 00| 00000000 0000O0O0OQO

02 April 2012

Integers

19

University of Washington

Values for Different Word Sizes

w
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
= UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

02 April 2012 Integers %8

Conversion Visualized

m 2’s Comp. —> Unsigned

= QOrdering Inversion

02 April 2012

® UMax
® UMax-1

" Negative — Big Positive

2’s Complement
Range

/—>0 TMax +1

TMax @ *® TMax

TMin

Integers

University of Washington

Unsigned
Range

21

University of Washington

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
= 0U, 42949672590

m Casting

= int tx, ty;
» unsigned ux, uy;

= Explicit casting between signed & unsigned same as U2T and T2U
= tx = (int) ux;
= uy = (unsigned) ty;

= |mplicit casting also occurs via assignments and procedure calls
" tx = ux;

= uy = ty;

02 April 2012 Integers %%

Casting Surprises

m Expression Evaluation

= |f you mix unsigned and signed in a single expression, then
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648 TMAX =2,147,483,647

m Constant, Constant, Relation Evaluation
0 ouU == unsigned
-1 0 < signed
-1 ouU > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

02 April 2012 Integers 23

University of Washington

Shift Operations

m Left shift:
= Shift bit-vector x left by y positions

X<<Yy

= Throw away extra bits on left
= Fill with Os on right
= Multiply by 2**y
m Right shift:
= Shift bit-vector x right by y positions

X >>y

= Throw away extra bits on right

Logical shift (for unsigned)
= Fill with Os on left

= Arithmetic shift (for signed)
= Replicate most significant bit on right
= Maintain sign of x

= Divide by 2**y

= correct truncation (towards 0) requires

some care with signed numbers

02 April 2012 Integers

Argument x 01100010
<< 3 00010000
Logical >> 2 00011000
Arithmetic >>2 | 00011000
Argument x 10100010
<< 3 00010000
Logical >> 2 00101000
Arithmetic >>2 | 11101000

Undefined behavior when
y <0oryz2word_size

24

Using Shifts and Masks

m Extract 2nd most significant byte of an integer
= First shift: X>> (2 *8)
" Then mask: (x >> 16) & OxFF

X 01100001/0110001001100011 01100100

X>>16 00000000 00000000 01100001|01100010

00000000 00000000 00000000 11111111
00000000 00000000 00000000 01100010

(x >>16) & OxFF

m Extracting the sign bit
" (x>>31)&1 -needthe “& 1” to clear out all other bits except LSB

m Conditionals as Boolean expressions (assuming x is 0 or 1)
= if (x) a=y else a=z; whichisthesameas a=x?y:z
" Can bere-writtenas: a=((x<<31)>>31)&y+(Ix<<31)>>31) &7z

02 April 2012 Integers 25

University of Washington

Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

B OXB = Xy g s Xpyeg s Xpym1 s Xz 10000 Xg
|

k copies of MSB < w >
X, v v v v v
< k >< w >

02 April 2012 Integers 26

Sign Extension Example

m Converting from smaller to larger integer data type
m C automatically performs sign extension

short int x = 12345;

int ix = (int) x;

short int y = -12345;

int iy = (int) vy

Decimal Hex Binary

X 12345 30 39 00110000 01101101
ix 123451 00 00 30 39 00000000 00000000 00110000 01101101
y -12345 CF C7 11001111 11000111
iy -12345(FF FF CF C7 11111111 11111111 11001111 11000111

02 April 2012 Integers 27

