University of Washington

Computer Systems

CSE 410 Spring 2012
2 — Memory and its Data

Today’s (and Friday’s) topics

m Memory and its bits, bytes, and integers
m Representing information as bits

m Bit-level manipulations
= Boolean algebra
= Boolean algebrain C

m Reading: Bryant/O’Hallaron sec. 2.1

Hardware: Logical View

CPU

Memory

Bus

Net

USB

Etc.

University of Washington

University of Washington

Hardware: Semi-Logical View

Intel* Core™2 Duo Processor
Intel* Cora™2 'lluad Processor

1l.'.IoGE."s

PCl Express* 2. 16 lanes

Graphics 16 GB/s DDRZ or DDR3

6.4 LGB/s or 8.5 GB/s

1]]

PCI Express* 2.0 8 lanes
Graphics 8 GB/s

PCl Express* 2.0
Graphics

12 Hi-Speed USE 2.0 Ports; eilais
Dual EHCI; USB Port Disable RIS

DDRr_ or DDR3

E 4 LGB/fs or 8.5 GB/s

Intel*High
Definition Audio
Intel* Quiet System
Technology

6 Serial ATA Ports; eSATA;
Port Disable

Intel® Matrix
LPC | or SPI Storage Technology
Intel® Turbo Memory
BIOS Support with User Pinning
Intel* Extreme Tuning
Support

Intel* P45 Express Chipset Block Diagram

8 lanes

8 GB/s

2 GBIs| DMI

300
MBfs

each x1

6 PCI Express” x1

Intel® Integrated
10/100/1000 MAC

Intel” Gigabit LAN Connect

B ---- Optional

Memory

University of Washington

Hardware: Physical View

PCl-Express Slots
1 PCI-E X186, 2 PCI-E X1 Back Panel Connectors

PCI Slots |

Socket 775
Core2 Quad/
Core2 Extreme
Ready
intel P45
Chipset
Intel ICH10
Chipset DDR2
1066+MHz
Dual Channel
Memory Slots
Serial ATA
Headers
Parallel Port RJ-45 Gigabit LAN Port
PS2 Mouse
Port Audio Ports

PS/2 Keyboard
Port

Senal Port USB 2.0 Ports
Memory

University of Washington

CPU “Memory”: Registers and Instruction Cache

Transparent
(hw controlled)
instruction
caching

Registers

Instruction

Cache ” Memory

Program
controlled
data
movement

o There are a fixed number of registers in the CPU
o Registers hold data
o Thereis an l-cache in the CPU that holds recently fetched instructions

o If you execute a loop that fits in the cache, the CPU goes to memory for
those instructions only once, then executes it out of its cache

e This slide is just an introduction.
We'll see a fuller explanation later in the course.

Memory 6

University of Washington

Performance: It's Not Just CPU Speed

m Data and instructions reside in memory
® To execute an instruction, it must be fetched into the CPU

= Next, the data the instruction operates on must be fetched into the
CPU

m CPU - Memory bandwidth can limit performance

" Improving performance 1: hardware improvements to increase
memory bandwidth (e.g., DDR - DDR2 - DDR3)

" |mproving performance 2: move less data into/out of the CPU
= Put some “memory” in the CPU chip itself (this is “cache” memory)

Memory 7

University of Washington

Binary Representations

m Base 2 number representation
" Represent 351,,as 0000000101011111, or 101011111,

m Electronic implementation
= Easy to store with bi-stable elements
= Reliably transmitted on noisy and inaccurate wires

— 0] 1 { *~0—
3.3V —
2.8V — S T N
0.5V — / \\’\f
/W

0.0V —

Memory 8

University of Washington

Encoding Byte Values

m Binary 000000002 -- 111111112
= Byte = 8 bits (binary digits) \
. (')\((\’b ’bﬁ*
m Hexadecimal 00, -- FF,, 0 [0 [0000
= Byte = 2 hexadecimal (hex) or base 16 digits % % 88(1)%,
= Base-16 number representation 3 | 3| 0011
4 | 4 | 0100
= Use characters ‘O’ to ‘9’ and ‘A’ to ‘F’ 5 5 0101
= Write FA1ID37B,. in C § § 8%2
= as OxFA1D37B or 0xfald37b 8 [8 | 1000
9 [9| 1001
A [10] 1010
B [11 (| 1011
C [12] 1100
D |13 1101
E 114] 1110
F [15] 1111

Memory 9

University of Washington

What is memory, really?

m How do we find data in memory?

University of Washington

Byte-Oriented Memory Organization

§ &

m Programs refer to addresses
= Conceptually, a very large array of bytes
= System provides an address space private to each “process”

= Process = program being executed + its data + its “state”
= Program can clobber its own data, but not that of others
= Clobbering code or “state” often leads to crashes (or security holes)
m Compiler + run-time system control memory allocation
= Where different program objects should be stored
= All allocation within a single address space

Memory 11

Machine Words

m Machine has a “word size”
= Nominal size of integer-valued data
= Including addresses

Until recently, most machines used 32 bits (4 bytes) words
= Limits addresses to 4GB
= Became too small for memory-intensive applications

More recent and high-end systems use 64 bits (8 bytes) words
= Potential address space ~ 1.8 X 10%° bytes (18 EB — exabytes)
= x86-64 supports 48-bit physical addresses: 256 TB (terabytes)
Machines support multiple data formats

= Fractions or multiples of word size
= Always integral (actually power of 2) number of bytes: 1, 2, 4, 8§, ...

Memory 12

University of Washington

Word-Oriented Memory Organization
64-bit 32-bit

m Addresses specify Words Words BYtes Addr
locations of bytes in memory 0000
= Address of first byte in word Addr 0001
= Addresses of successive words Addr 7 0002
differ by 4 (32-bit) or 8 (64-bit) - 8882
= Address of word O, 1, .. 10? h Addr 0005
” 0006
0007
0008
Addr 0009
Addr 2 0010
= 0011
7 0012
Addr 0013
2 0014
0015

University of Washington

Word-Oriented Memory Organization
64-bit 32-bit

m Addresses specify Words Words BYtes Addr
locations of bytes in memory 0000
= Address of first byte in word Addr 0001
* Addresses of successive words Addr 0000 0002
differ by 4 (32-bit) or 8 (64-bit) - 8882
= Address of wordO, 1, .. 10? P00 Addr 0005
T 0006
0007
0008
Addr 0009
0010
00_08 0012
Addr 0013
0012 0014
0015

University of Washington

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address &

m Address 0004
stores the value 351 (or 15F ;)

0000
00 00 01 5F| 0004
0008
000C
0010
0014
0018
001C
0020
0024

University of Washington

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004 0000
stores the value 351 (or 15F,) 00 00 01 5F| 0004

m Pointer to address 0004 0008

stored at address 001C 000C
0010
0014
0018
00,00 ;00 ;04| 001C
0020
0024

University of Washington

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004

stores the value 351 (or 15F,() 00 00 Ol SF 8882

m Pointer to address 0004 0008
stored at address 001C 000C

: . 0010

m Pointer to a pointer 0014
in 0024 0018
00.00 00 04| 001C

< 0020

00: 00 00 1C| 0024

University of Washington

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004

stores the value 351 (or 15F,() 00 00 Ol SF 8882

m Pointer to address 0004 0008
stored at address 001C 000C

i) 0010

m Pointer to a pointer 00 00 00 ocl o014
in 0024 0018
stores the value 12 < 00 00 00 1cC 8852

" |sit a pointer?

University of Washington

Data Representations

m Sizes of objects (in bytes)
= Java data type

boolean
byte
char
short
int
float

double
long

(reference)

C data type

bool
char

short int
int

float

long int
double
long long
long double
pointer *

Memory

Typical 32-bit

N 00 WO D DDNNPR R

x86-64

0O 0 0~ A NN PP BB

(B
o O

19

University of Washington

Byte Ordering

m How should bytes within multi-byte word be ordered in
memory?
= Peanut butter or chocolate first?

m Say you want to store Oxaabbccdd
= What order will the bytes be stored?

University of Washington

Byte Ordering

m How should bytes within multi-byte word be ordered in
memory?

= Peanut butter or chocolate first?

m Say you want to store Oxaabbccdd
= What order will the bytes be stored?

m Conventions!
= Big-endian, Little-endian
= Based on “Gulliver’s Travels”
= tribes cut eggs on different sides (big, little)

Memory 21

University of Washington

Byte Ordering Example

m Big-Endian (PowerPC, Sun, Internet)
= |Least significant byte has highest address
m Little-Endian (x86)
= Least significant byte has lowest address
m Example

= Variable has 4-byte representation 0x01234567
= Address of variable is 0x100

0x100 Ox101 O0x102 O0x103

Big Endian 01| 23 | 45 | 67

0x100 Ox101 O0x102 O0x103

Little Endian 67 | 45| 23 | 01

University of Washington

Reading Byte-Reversed Listings

m Disassembly

= Text representation of binary machine code
= Generated by program that reads the machine code

m Example instruction in memory

= add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

Address Instruction Code Assembly Rendition
8048366: 81c3ab 120000 add $0x12ab,%ebx

University of Washington

Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

m Example instruction in memory

= add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

Address Instruction Code Assembly Rendition
8048366: 81 c3ab 1200 00 add $0x12ab,%ebx

Deciphering numbers

m Value: Ox12ab
m Pad to 32 bits: 0x000012ab
m Split into bytes: 000012 ab

m Reverse (little-endian): ab 12 00 00

University of Washington

. . & = ‘address of value’
Addresses and Pointers in C * = Value at address’

or ‘de-reference’

m Pointer declarations use *
= int * ptr; intx,y;, ptr=&x;

*(&x) is equivalent to ??

= Declares a variable ptr that is a pointer to a data item that is an integer
= Declares integer values named x and y
= Assigns ptr to point to the address where x is stored

m We can do arithmetic on pointers

" ptr=ptr+1; //really adds 4 (because an integer uses 4 bytes?)

= Changes the value of the pointer so that it now points to the next data
item in memory (that may be vy, or it may not — this is dangerous!)

m To use the value pointed to by a pointer we use de-reference
" y="*ptr+1; isthesameasy=x+1;
= But, if ptr = &y theny = *ptr+ 1; isthe sameasy=y + 1;
= *ptris the value stored at the location to which the pointer ptr is pointing

Memory 25

University of Washington

Arrays

m Arrays represent adjacent locations in memory storing the
same type of data object

= e.g., int big_array[128];
allocated 512 adjacent locations in memory starting at 0Ox00ff0000

m Pointers to arrays point to a certain type of object

= e.g.,int * array_ptr;
array_ptr = big_array;
array_ptr = &big_array[0];
array_ptr = &big_array[3];
array_ptr = &big_array[0] + 3;
array_ptr = big_array + 3;
*array_ptr = *array_ptr + 1;
array_ptr = &big_array[130];

" |n general: &big_array]i] is the same as (big_array + i)
= which implicitly computes: &bigarray[0] + i*sizeof(bigarray[0]);

Memory 26

University of Washington

Arrays

m Arrays represent adjacent locations in memory storing the
same type of data object
= E.g., int big_array[128];
allocated 512 adjacent locations in memory starting at 0Ox00ff0000
m Pointers to arrays point to a certain type of object
= E.g.,int *array_ptr;

array_ptr = big_array; 0x00ff0O000

array_ptr = &big_array[0]; 0x00ff0O000

array_ptr = &big_array[3]; 0x00ffO00c

array_ptr = &big_array[0] + 3; 0x00ffO00C (adds 3 * size of int)
array_ptr = big_array + 3; 0x00ffO00C (adds 3 * size of int)
*array_ptr = *array_ptr + 1; 0x00ff000c (but big_array[3] is incremented)
array_ptr = &big_array[130]; 0x00ff0208 (out of bounds, C doesn’t check)

" |n general: &big_array]i] is the same as (big_array + i)
which implicitly computes: &bigarray[0] + i*sizeof(bigarray[0]);

Memory 27

University of Washington

General rUIeS for C (assignments)

m Left-hand-side = right-hand-side
® |LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x atlocation 0x04, y at 0x18

= x originally 0x0, y originally 0x0027D03C 0000

00 00 00 00| 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

University of Washington

General rUIeS for C (assignments)

m Left-hand-side = right-hand-side
® |LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x atlocation 0x04, y at 0x18

= x originally 0x0, y originally 0x0027D03C 0000

" intx,y; 00 .00 (00 00| 0004
. . 0008

x =V, // getvalue at y and put it in x 000C
0010
0014
00.27 DO .3C| 0018
001C
0020
0024

University of Washington

General rUIeS for C (assignments)

m Left-hand-side = right-hand-side
® |LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x atlocation 0x04, y at 0x18

= x originally 0x0, y originally 0x0027D03C 0000

- 00 27 DO 3C| 0004
" intxy,
N 0008
x =y; // get value at y and put it in x 000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

University of Washington

General rUIeS for C (assignments)

m Left-hand-side = right-hand-side
® |LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x atlocation 0x04, y at 0x18

= x originally 0x0, y originally 0x0027D03C 0000
| 00 .27 DO 3C| 0004

" intxy; 0008
x =y; // get value at y and put it in x 000C

= int *x;inty; 0010
x = &y + 3; // get address of y add 12 0014
00 27 DO 3C| 0018

001C

0020

0024

University of Washington

General rUIeS for C (assignments)

m Left-hand-side = right-hand-side
® |LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x atlocation 0x04, y at 0x18

= x originally 0x0, y originally 0x0027D03C 0000
| 24 .00 00 00| 0004

" intxy; 0008
x =y; // get value at y and put it in x 000C

= int *x;inty; 0010
x = &y + 3; // get address of y add 12 0014
00 27 DO 3C| 0018

001C

0020

0024

University of Washington

General rUIeS for C (assignments)

m Left-hand-side = right-hand-side
® |LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x atlocation 0x04, y at 0x18

= x originally 0x0, y originally 0x0027D03C 0000
. 24 .00 00 00| 0004

" intx,y; 0008
x =Y, // getvalue at y and put it in x 000C

" int *x;inty; 0010
x =&y + 3; // get address of y add 12 0014

= int * x; inty; 00 27 DO 3C| 0018
*x =vy; // value of y copied to 001C

// location to which x points 0020

0024

University of Washington

General rUIes for C (assignments)

m Left-hand-side = right-hand-side
® |LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x atlocation 0x04, y at 0x18

= x originally 0x0, y originally 0x0027D03C 0000
: 24 00 (00 00| 0004
ntxy; 0008
x =Y, // getvalue at y and put it in x 000C

= int * x; inty; 0010
x = &y + 3; // get address of y add 12 0014

= int * x; inty; 00 27 DO 3C| 0018
*x =y; // value of y copied to 001C

// location to which x points 0020

00 27 DO 3C| 0024

University of Washington

Representing Integers

m int A = 12345; Decimal: 12345
= int B = -12345; Binary: 00110000 0011 1001
m long int C = 12345;
Hex: 3 0 3 9
IA32, x86-64 A Sun A
IA32 C X86-64 C Sun C
39 00
30 00 39 | » 39 00
00 30 30 |« 1 30 00
00 39 00 |« 1 00 30
00 | » 00 39
IA32, x86-64 B Sun B 00
C7 FF 00
CF FF 00

FF CF *\\\\\\ 00
FF c7 Two’s complement representation
for negative integers (covered later)

Memory 35

University of Washington

Representing Pointers

mE int B = -12345;
mE int *P = &B;

Sun P IA32P x86-64 P

EF D4 0C
FF F8 89
FB FF EC
2C BF FF
FF
7F
00
00

Different compilers & machines assign different locations to objects

Memory 36

University of Washington

Examining Data Representations

m Code to print byte representation of data
= Casting pointer to unsigned char * creates byte array

typedef unsigned char * pointer;

void show bytes (pointer start, int len)
{
int 1i;
for (1 = 0; 1 < len; i++)
printf ("0x%p\t0x%.2x\n", start+i, start[i]);
printf ("\n") ;
}

void show _int (int x)

{

show bytes((pointer) &x, sizeof(int));

}

Memory

Some printf directives:
%p: Print pointer
%x: Print hexadecimal
“An”: New line

37

University of Washington

show bytes Execution Example

int a = 12345; // represented as 0x00003039
printf ("int a = 12345;\n");

ShOW_int (a) - // show bytes((pointer) &a, sizeof(int));

Result (Linux):

int a = 12345;

Ox11ffffcb8 0x39
Ox11ff£ffcb9 0x30
Oxllffffcba 0x00
Ox1ll1ffffcbb 0x00

Representing strings
m A C-style string is represented by an array of bytes.

= Elements are one-byte ASCII codes for each character.
= A 0O value marks the end of the array.

32 space | | 48 o] |64 @] |80 P 96) 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 7 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 C 115 S
36 S 52 4| |68 DJ| |84 T 100 d 116 t
37 % 53 5 69 E 85 u 101 e 117 u
38 & 54 6 70 F 86 \'% 102 f 118 Y
39 ’ 55 7 71 G 87 W 103 g 119 W
40 (56 8 72 H 88 X 104 h 120 X
41) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 L 106 j 122 yA
43 ¥ 5 |1 175 k||91 (| |107 k| []123 {
44 , 60 < 76 L 92 \ 108 (124 |
45 : 61 =77 Mm| |93 711|109 m]||125 1
46 . 62 > 78 N 94 " 110 n 126 ~
47 / 63 ? 79 0] 95 _ 111 o] 127 del

Memory 39

University of Washington

Null-terminated Strings

m For example, “Harry Potter” can be stored as a 13-byte array.

72 | 97 | 114 114|121 | 32 | 80 | 111 | 116 | 116 | 101]| 114| O
H a r r y P 0 t t e r \0

m Why do we put a 0, or null, at the end of the string?

m Computing string length?

Memory 40

University of Washington

Compatibility
char S[6] = "12345";

Linux/Alpha S SunS

31 | 1 31
32 | | 32
33 | 33
34 | | 34
35 [1 35
00 [* 00

m Byte ordering not an issue

m Unicode characters — up to 4 bytes/character

= ASCII codes still work (leading 0 bit) but can support the many characters
in all languages in the world

= Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

Memory 41

University of Washington

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0
= AND: A&B=1whenbothAislandBis1
" OR:A|B=1wheneitherAislorBisl
= XOR: AMB =1 when either Ais1 orBis 1, but not both
= NOT:~A=1when Ais 0 and vice-versa
= DeMorgan’s Law: ~“(A | B)=~A & ~B

&lo 1 |]o 1 01 ~|
ojloo ofo1 oflo1 o1
1{0 1 1{1 1 110 1]0

Memory 42

University of Washington

General Boolean Algebras

m Operate on bit vectors
= (QOperations applied bitwise

01101001 01101001 01101001
& 01010101 01010101 A 01010101 ~ 01010101

m All of the properties of Boolean algebra apply

01010101
A 01010101

m How does this relate to set operations?

Memory 43

University of Washington

Representing & Manipulating Sets

m Representation
= Width w bit vector represents subsets of {0, ..., w—1}

" a=1ifj €A
01101001 {0,3,5,6}
76543210
01010101 {0,2,4,6}
76543210
m Operations
= & Intersection 01000001 {0O,6}
= Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Memory 44

University of Washington

Bit-Level Operations in C

m Operations &, |, A, ~ are availablein C
= Apply to any “integral” data type
= long, 1nt, short, char, unsigned
= View arguments as bit vectors
= Arguments applied bit-wise
m Examples (char data type)
" ~0x41 --> OxBE
~01000001, --> 10111110,
" ~0x00 --> OxFF
~00000000, --> 11111111,

" Ox609 & 0Ox55 —-—-> 0x41
01101001, & 01010101, --> 01000001,
" O0x09 | Ox55 --> 0x7D

01101001, | 01010101, --> 01111101,

Memory 45

University of Washington

Contrast: Logic Operations in C

m Contrast to logical operators
" && |, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1
= Early termination

m Examples (char data type)

= 10x41 --> 0x00
= 10x00 --> 0x01
= 10x41 --> 0x01
" 0x69 && 0Ox55 —--> 0x01
" O0x09 || Ox55 --> 0x01

" p && *p++ (avoids null pointer access, null pointer = 0x00000000)
1t (p) *pt+t;

Memory 46

