
University of Washington

Computer Systems
CSE 410 Spring 2012
2 – Memory and its Data

1 Memory

University of Washington

Today’s (and Friday’s) topics

 Memory and its bits, bytes, and integers

 Representing information as bits

 Bit-level manipulations
 Boolean algebra

 Boolean algebra in C

 Reading: Bryant/O’Hallaron sec. 2.1

2 Memory

University of Washington

Hardware: Logical View

3 Memory

CPU Memory

Bus

Disks Net USB Etc.

University of Washington

Hardware: Semi-Logical View

4 Memory

University of Washington

Hardware: Physical View

5 Memory

University of Washington

CPU “Memory”: Registers and Instruction Cache

6 Memory

 There are a fixed number of registers in the CPU

 Registers hold data

 There is an I-cache in the CPU that holds recently fetched instructions

 If you execute a loop that fits in the cache, the CPU goes to memory for
those instructions only once, then executes it out of its cache

 This slide is just an introduction.
We'll see a fuller explanation later in the course.

Instruction

Cache

Registers

Memory

Program

controlled

data

movement

Transparent

(hw controlled)

instruction

caching

CPU

University of Washington

Performance: It's Not Just CPU Speed

 Data and instructions reside in memory
 To execute an instruction, it must be fetched into the CPU

 Next, the data the instruction operates on must be fetched into the
CPU

 CPU – Memory bandwidth can limit performance
 Improving performance 1: hardware improvements to increase

memory bandwidth (e.g., DDR → DDR2 → DDR3)

 Improving performance 2: move less data into/out of the CPU

 Put some “memory” in the CPU chip itself (this is “cache” memory)

7 Memory

University of Washington

Binary Representations

 Base 2 number representation
 Represent 35110 as 00000001010111112 or 1010111112

 Electronic implementation
 Easy to store with bi-stable elements

 Reliably transmitted on noisy and inaccurate wires

0.0V

0.5V

2.8V

3.3V

0 1 0

8 Memory

University of Washington

Encoding Byte Values

 Binary 000000002 -- 111111112

 Byte = 8 bits (binary digits)

 Decimal 010 -- 25510

 Hexadecimal 0016 -- FF16

 Byte = 2 hexadecimal (hex) or base 16 digits

 Base-16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in C

 as 0xFA1D37B or 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

9 Memory

University of Washington

What is memory, really?

 How do we find data in memory?

10 Memory

University of Washington

Byte-Oriented Memory Organization

 Programs refer to addresses
 Conceptually, a very large array of bytes

 System provides an address space private to each “process”

 Process = program being executed + its data + its “state”

 Program can clobber its own data, but not that of others

 Clobbering code or “state” often leads to crashes (or security holes)

 Compiler + run-time system control memory allocation
 Where different program objects should be stored

 All allocation within a single address space

• • •

11 Memory

University of Washington

Machine Words

 Machine has a “word size”
 Nominal size of integer-valued data

 Including addresses

 Until recently, most machines used 32 bits (4 bytes) words

 Limits addresses to 4GB

 Became too small for memory-intensive applications

 More recent and high-end systems use 64 bits (8 bytes) words

 Potential address space  1.8 X 1019 bytes (18 EB – exabytes)

 x86-64 supports 48-bit physical addresses: 256 TB (terabytes)

 Machines support multiple data formats

 Fractions or multiples of word size

 Always integral (actually power of 2) number of bytes: 1, 2, 4, 8, …

12 Memory

University of Washington

Word-Oriented Memory Organization

 Addresses specify
locations of bytes in memory
 Address of first byte in word

 Addresses of successive words
differ by 4 (32-bit) or 8 (64-bit)

 Address of word 0, 1, .. 10?

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

13 Memory

University of Washington

Word-Oriented Memory Organization

 Addresses specify
locations of bytes in memory
 Address of first byte in word

 Addresses of successive words
differ by 4 (32-bit) or 8 (64-bit)

 Address of word 0, 1, .. 10?

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

14 Memory

University of Washington

Addresses and Pointers

 Address is a location in memory

 Pointer is a data object
that contains an address

 Address 0004
stores the value 351 (or 15F16)

15

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

5F 01 00 00

Memory

University of Washington

Addresses and Pointers

 Address is a location in memory

 Pointer is a data object
that contains an address

 Address 0004
stores the value 351 (or 15F16)

 Pointer to address 0004
stored at address 001C

16

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

04 00 00 00

5F 01 00 00

Memory

University of Washington

Addresses and Pointers

 Address is a location in memory

 Pointer is a data object
that contains an address

 Address 0004
stores the value 351 (or 15F16)

 Pointer to address 0004
stored at address 001C

 Pointer to a pointer
in 0024

17

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

04 00 00 00

1C 00 00 00

5F 01 00 00

Memory

University of Washington

Addresses and Pointers

 Address is a location in memory

 Pointer is a data object
that contains an address

 Address 0004
stores the value 351 (or 15F16)

 Pointer to address 0004
stored at address 001C

 Pointer to a pointer
in 0024

 Address 0014
stores the value 12
 Is it a pointer?

18

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

04 00 00 00

1C 00 00 00

5F 01 00 00

0C 00 00 00

Memory

University of Washington

Data Representations

 Sizes of objects (in bytes)
 Java data type C data type Typical 32-bit x86-64

 boolean bool 1 1

 byte char 1 1

 char 2 2

 short short int 2 2

 int int 4 4

 float float 4 4

 long int 4 8

 double double 8 8

 long long long 8 8

 long double 8 16

 (reference) pointer * 4 8

19 Memory

University of Washington

Byte Ordering

 How should bytes within multi-byte word be ordered in
memory?
 Peanut butter or chocolate first?

 Say you want to store 0xaabbccdd
 What order will the bytes be stored?

20 Memory

University of Washington

Byte Ordering

 How should bytes within multi-byte word be ordered in
memory?
 Peanut butter or chocolate first?

 Say you want to store 0xaabbccdd
 What order will the bytes be stored?

 Conventions!
 Big-endian, Little-endian

 Based on “Gulliver’s Travels”

 tribes cut eggs on different sides (big, little)

21 Memory

University of Washington

Byte Ordering Example

 Big-Endian (PowerPC, Sun, Internet)
 Least significant byte has highest address

 Little-Endian (x86)
 Least significant byte has lowest address

 Example
 Variable has 4-byte representation 0x01234567

 Address of variable is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

22 Memory

University of Washington

Reading Byte-Reversed Listings

 Disassembly
 Text representation of binary machine code

 Generated by program that reads the machine code

 Example instruction in memory
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

 Address Instruction Code Assembly Rendition

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

23 Memory

University of Washington

Reading Byte-Reversed Listings

 Disassembly
 Text representation of binary machine code

 Generated by program that reads the machine code

 Example instruction in memory
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

 Address Instruction Code Assembly Rendition

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

Deciphering numbers

 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse (little-endian): ab 12 00 00
24 Memory

University of Washington

Addresses and Pointers in C

 Pointer declarations use *
 int * ptr; int x, y; ptr = &x;

 Declares a variable ptr that is a pointer to a data item that is an integer

 Declares integer values named x and y

 Assigns ptr to point to the address where x is stored

 We can do arithmetic on pointers
 ptr = ptr + 1; // really adds 4 (because an integer uses 4 bytes?)

 Changes the value of the pointer so that it now points to the next data
item in memory (that may be y, or it may not – this is dangerous!)

 To use the value pointed to by a pointer we use de-reference
 y = *ptr + 1; is the same as y = x + 1;

 But, if ptr = &y then y = *ptr + 1; is the same as y = y + 1;

 *ptr is the value stored at the location to which the pointer ptr is pointing

25

& = ‘address of value’
* = ‘value at address’
 or ‘de-reference’

*(&x) is equivalent to ??

Memory

University of Washington

Arrays

 Arrays represent adjacent locations in memory storing the
same type of data object
 e.g., int big_array[128];

allocated 512 adjacent locations in memory starting at 0x00ff0000

 Pointers to arrays point to a certain type of object
 e.g., int * array_ptr;

array_ptr = big_array;
array_ptr = &big_array[0];
array_ptr = &big_array[3];
array_ptr = &big_array[0] + 3;
array_ptr = big_array + 3;
*array_ptr = *array_ptr + 1;
array_ptr = &big_array[130];

 In general: &big_array[i] is the same as (big_array + i)
 which implicitly computes: &bigarray[0] + i*sizeof(bigarray[0]);

26 Memory

University of Washington

Arrays

 Arrays represent adjacent locations in memory storing the
same type of data object
 E.g., int big_array[128];

allocated 512 adjacent locations in memory starting at 0x00ff0000

 Pointers to arrays point to a certain type of object
 E.g., int * array_ptr;

array_ptr = big_array; 0x00ff0000
array_ptr = &big_array[0]; 0x00ff0000
array_ptr = &big_array[3]; 0x00ff000c
array_ptr = &big_array[0] + 3; 0x00ff000c (adds 3 * size of int)

array_ptr = big_array + 3; 0x00ff000c (adds 3 * size of int)

*array_ptr = *array_ptr + 1; 0x00ff000c (but big_array[3] is incremented)

array_ptr = &big_array[130]; 0x00ff0208 (out of bounds, C doesn’t check)

 In general: &big_array[i] is the same as (big_array + i)
which implicitly computes: &bigarray[0] + i*sizeof(bigarray[0]);

27 Memory

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 x originally 0x0, y originally 0x0027D03C

28

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

00 00 00 00

3C D0 27 00

Memory

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 x originally 0x0, y originally 0x0027D03C

 int x, y;
x = y; // get value at y and put it in x

29

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

3C D0 27 00

Memory

00 00 00 00

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 x originally 0x0, y originally 0x0027D03C

 int x, y;
x = y; // get value at y and put it in x

30

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

3C D0 27 00

3C D0 27 00

Memory

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 x originally 0x0, y originally 0x0027D03C

 int x, y;
x = y; // get value at y and put it in x

 int * x; int y;
x = &y + 3; // get address of y add 12

31

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

3C D0 27 00

Memory

3C D0 27 00

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 x originally 0x0, y originally 0x0027D03C

 int x, y;
x = y; // get value at y and put it in x

 int * x; int y;
x = &y + 3; // get address of y add 12

32

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

3C D0 27 00

00 00 00 24

Memory

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 x originally 0x0, y originally 0x0027D03C

 int x, y;
x = y; // get value at y and put it in x

 int * x; int y;
x = &y + 3; // get address of y add 12

 int * x; int y;
*x = y; // value of y copied to
 // location to which x points

33

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

00 00 00 24

3C D0 27 00

Memory

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 x originally 0x0, y originally 0x0027D03C

 int x, y;
x = y; // get value at y and put it in x

 int * x; int y;
x = &y + 3; // get address of y add 12

 int * x; int y;
*x = y; // value of y copied to
 // location to which x points

34

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

00 00 00 24

3C D0 27 00

3C D0 27 00

Memory

University of Washington

Representing Integers

 int A = 12345;

 int B = -12345;

 long int C = 12345;

Decimal: 12345

Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39
30
00
00

IA32, x86-64 A

30
39

00
00

Sun A

C7
CF
FF
FF

IA32, x86-64 B

CF
C7

FF
FF

Sun B

Two’s complement representation
for negative integers (covered later)

00
00
00
00

39
30
00
00

X86-64 C

30
39

00
00

Sun C

39
30
00
00

IA32 C

35 Memory

University of Washington

Representing Pointers

 int B = -12345;

 int *P = &B;

FF
7F
00
00

0C
89
EC
FF

x86-64 P

Different compilers & machines assign different locations to objects

FB
2C

EF
FF

Sun P

FF
BF

D4
F8

IA32 P

36 Memory

University of Washington

Examining Data Representations

 Code to print byte representation of data
 Casting pointer to unsigned char * creates byte array

typedef unsigned char * pointer;

void show_bytes(pointer start, int len)

{

 int i;

 for (i = 0; i < len; i++)

 printf("0x%p\t0x%.2x\n", start+i, start[i]);

 printf("\n");

}

Some printf directives:
%p: Print pointer
%x: Print hexadecimal
“\n”: New line

37

void show_int (int x)

{

 show_bytes((pointer) &x, sizeof(int));

}

Memory

University of Washington

show_bytes Execution Example

38

int a = 12345; // represented as 0x00003039

printf("int a = 12345;\n");

show_int(a); // show_bytes((pointer) &a, sizeof(int));

Result (Linux):

int a = 12345;

0x11ffffcb8 0x39

0x11ffffcb9 0x30

0x11ffffcba 0x00

0x11ffffcbb 0x00

Memory

University of Washington

Representing strings

 A C-style string is represented by an array of bytes.
 Elements are one-byte ASCII codes for each character.

 A 0 value marks the end of the array.

39 Memory

32 space 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 ” 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ’ 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 I 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 del

University of Washington

Null-terminated Strings
 For example, “Harry Potter” can be stored as a 13-byte array.

 Why do we put a 0, or null, at the end of the string?

 Computing string length?

72 97 114 114 121 32 80 111 116 116 101 114 0

H a r r y P o t t e r \0

40 Memory

University of Washington

char S[6] = "12345";

Compatibility

 Byte ordering not an issue

 Unicode characters – up to 4 bytes/character
 ASCII codes still work (leading 0 bit) but can support the many characters

in all languages in the world

 Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

Linux/Alpha S Sun S

33
34

31
32

35
00

33
34

31
32

35
00

41 Memory

University of Washington

Boolean Algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

 AND: A&B = 1 when both A is 1 and B is 1

 OR: A|B = 1 when either A is 1 or B is 1

 XOR: A^B = 1 when either A is 1 or B is 1, but not both

 NOT: ~A = 1 when A is 0 and vice-versa

 DeMorgan’s Law: ~(A | B) = ~A & ~B

& 0 1

0 0 0

1 0 1

~

0 1

1 0

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

42 Memory

University of Washington

General Boolean Algebras

 Operate on bit vectors
 Operations applied bitwise

 All of the properties of Boolean algebra apply

 How does this relate to set operations?

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010

43

 01010101
^ 01010101
 00111100

Memory

University of Washington

Representing & Manipulating Sets

 Representation
 Width w bit vector represents subsets of {0, …, w–1}

 aj = 1 if j  A

01101001 { 0, 3, 5, 6 }

76543210

01010101 { 0, 2, 4, 6 }

76543210

 Operations
 & Intersection 01000001 { 0, 6 }

 | Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }

44 Memory

University of Washington

Bit-Level Operations in C

 Operations &, |, ^, ~ are available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (char data type)
 ~0x41 --> 0xBE

~010000012 --> 101111102

 ~0x00 --> 0xFF

~000000002 --> 111111112

 0x69 & 0x55 --> 0x41

011010012 & 010101012 --> 010000012

 0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

45 Memory

University of Washington

Contrast: Logic Operations in C

 Contrast to logical operators
 &&, ||, !

 View 0 as “False”

 Anything nonzero as “True”

 Always return 0 or 1

 Early termination

 Examples (char data type)
 !0x41 --> 0x00

 !0x00 --> 0x01

 !!0x41 --> 0x01

 0x69 && 0x55 --> 0x01

 0x69 || 0x55 --> 0x01

 p && *p++ (avoids null pointer access, null pointer = 0x00000000)

 if (p) *p++;

46 Memory

