
Disks & File Systemsy

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

5/31/2009 cse410-28-files © 2006-09 Perkins, DW Johnson and University of Washington 1

Readings and Referencesg

• Reading g
» Sec. 6.3 (disk characteristics), Computer Organization & Design,

Patterson & Hennessy

S 10 1 10 3 10 6 O i S C Silb h G l i» Sec. 10.1-10.3, 10.6, Operating System Concepts, Silberschatz, Galvin,
and Gagne. The rest of chs. 10-12 have much useful information if
you have time to read them.

5/31/2009 cse410-28-files © 2006-09 Perkins, DW Johnson and University of Washington 2

Hard drives
• The ugly guts of a hard disk.

» Data is stored on double sided magnetic disks called platters» Data is stored on double-sided magnetic disks called platters.
» Each platter is arranged like a record, with many concentric tracks.
» Tracks are further divided into individual sectors, which are the basic unit of data transfer.
» Each surface has a read/write head like the arm on a record player, but all the heads are

connected and move together.
• A 75GB IBM Deskstar has roughly:

» 5 platters (10 surfaces),
27 000 k f

Platters

» 27,000 tracks per surface,
» 512 sectors per track, and
» 512 bytes per sector. Platter

Sectors

Tracks

Track

Sectors

3

Accessing data on a hard diskg
• Accessing a sector on a track on a hard disk takes a lot of time!

— Seek time measures the delay for the disk head to reach the track— Seek time measures the delay for the disk head to reach the track.
» A rotational delay accounts for the time to get to the right sector.
» The transfer time is how long the actual data read or write takes.
» There may be additional overhead for the operating system or the controller hardware on

the hard disk drive.
• Rotational speed, measured in revolutions per minute or RPM, partially determines

the rotational delay and transfer time.
Tracks

Platter

Sectors

Track

4

Estimating disk latencies (seek time)g ()

• Manufacturers often report average seek times of 8-10ms.
» These times average the time to seek from any track to any other track.

• In practice, seek times are often much better.
» For example if the head is already on or near the desired track then» For example, if the head is already on or near the desired track, then

seek time is much smaller. In other words, locality is important!
» Actual average seek times are often just 2-3ms.

5

Estimating Disk Latencies (rotational latency)g (y)

• Once the head is in place, we need to wait until the right sector is
underneath the headunderneath the head.
» This may require as little as no time (reading consecutive sectors) or as much

as a full rotation (just missed it).
» On average for random reads/writes we can assume that the disk spins» On average, for random reads/writes, we can assume that the disk spins

halfway.

• Rotational delay depends partly on how fast the disk platters spin• Rotational delay depends partly on how fast the disk platters spin.

Average rotational delay = 0.5 x rotations x rotational speed

l 400 di k h i l d l f» For example, a 5400 RPM disk has an average rotational delay of:

0.5 rotations / (5400 rotations/minute) = 5.55ms

6

Estimating disk timesg
• The overall response time is the sum of the seek

time rotational delay transfer time and overheadtime, rotational delay, transfer time, and overhead.
• Assume a disk has the following specifications.

» An average seek time of 9ms
» A 5400 RPM rotational speedp
» A 10MB/s average transfer rate
» 2ms of overheads

• How long does it take to read a random 1,024 byte sector?
» The average rotational delay is 5.55ms.
» The transfer time will be about (1024 bytes / 10 MB/s) = 0.1ms.
» The response time is then 9ms + 5.55ms + 0.1ms + 2ms = 16.7ms. That’s 16,700,000

cycles for a 1GHz processor!cycles for a 1GHz processor!
• One possible measure of throughput would be the number of random sectors that

can be read in one second.

7

(1 sector / 16.7ms) x (1000ms / 1s) = 60 sectors/second.

Storage Latency:
How Far Away is the Data?How Far Away is the Data?

Andromeda

Tape /Optical
Robot

109 2,000 Years

Disk10 6 2 YearsPluto

Memory100 Olympia 1.5 hr

On Chip Cache
On Board Cache

Memory

2
10

100

This Building
This Room

10 min

5/31/2009 © 2007 Gribble, Lazowska, Levy, Zahorjan 8

2

Registers1 My Head 1 min

© 2004 Jim Gray, Microsoft Corporation

File systemsy

• The concept of a file system is simplep y p
» the implementation of the abstraction for

secondary storage
• abstraction = files

» logical organization of files into directories
• the directory hierarchy

» sharing of data between processes, people and
machines
• access control, consistency, …

5/31/2009 9

Files
• A file is a collection of data with some properties

» contents, size, owner, last read/write time, protection …» contents, size, owner, last read/write time, protection …
• Files may also have types

» understood by file system
• device, directory, symbolic linkdevice, directory, symbolic link

» understood by other parts of OS or by runtime libraries
• executable, dll, source code, object code, text file, …

• Type can be encoded in the file’s name or contentsyp
» windows encodes type in name

• .com, .exe, .bat, .dll, .jpg, .mov, .mp3, …
» old Mac OS stored the name of the creating program along

i h h fil
g p g g

with the file
» unix has a smattering of both

• in content via magic numbers or initial characters (e.g., #!)

5/31/2009 10

Basic operationsp
NT

• CreateFile(name, CREATE)
Unix

• create(name)
• CreateFile(name, OPEN)

• ReadFile(handle, …)

()

• open(name, mode)

• read(fd, buf, len)
• WriteFile(handle, …)

• FlushFileBuffers(handle, …)
• write(fd, buf, len)

• sync(fd)
• SetFilePointer(handle, …)

• CloseHandle(handle, …)
• seek(fd, pos)

• close(fd)
• DeleteFile(name)

• CopyFile(name)

Mo eFile(name)

• unlink(name)

• rename(old, new)

5/31/2009 11

• MoveFile(name)

File access methods
• Some file systems provide different access methods

that specify ways the application will access datathat specify ways the application will access data
» sequential access

• read bytes one at a time, in order
» direct access» direct access

• random access given a block/byte #
» record access

• file is array of fixed- or variable-sized records
» indexed access

• FS contains an index to a particular field of each record in a file
• apps can find a file based on value in that record (similar to DB)

Wh d b t di ti i hi ti l f• Why do we care about distinguishing sequential from
direct access?
» what might the FS do differently in these cases?

5/31/2009 12

Directories

• Directories provide:
» a way for users to organize their files
» a convenient file name space for both users and FS’s

• Most file systems support multi level directories• Most file systems support multi-level directories
» naming hierarchies (/, /usr, /usr/local, /usr/local/bin, …)

• Most file systems support the notion of current y pp
directory
» absolute names: fully-qualified starting from root of FS

bash$ cd /usr/localbash$ cd /usr/local

» relative names: specified with respect to current directory
bash$ cd /usr/local (absolute)
bash$ cd bin (relative, equivalent to cd /usr/local/bin)

5/31/2009 13

Directory internalsy
• A directory is typically just a file that happens to

t i i l t d tcontain special metadata
» directory = list of (name of file, file attributes)
» attributes include such things as:» attributes include such things as:

• size, protection, location on disk, creation time, access time,
…

» the directory list is usually unordered (effectively» the directory list is usually unordered (effectively
random)
• when you type “ls”, the “ls” command sorts the results for

youy
» Key difference from ordinary files: system will not

allow user process to write a directory with ordinary
I/O calls, even if the user created/owns it. Why?

5/31/2009 14

I/O calls, even if the user created/owns it. Why?

Path name translation
• Let’s say you want to open “/one/two/three”

fd = open(“/one/two/three”, O RDWR);p (, _)

• What goes on inside the file system?
» open directory “/” (well known, can always find)
» search the directory for “one” get location of “one”» search the directory for one , get location of one
» open directory “one”, search for “two”, get location of “two”
» open directory “two”, search for “three”, get loc. of “three”
» open file “three”» open file three
» (of course, permissions are checked at each step)

• FS spends lots of time walking down directory paths
thi i h e i e te f e d/ ite (e i t te)» this is why open is separate from read/write (session state)

» OS will cache prefix lookups to enhance performance
• /a/b, /a/bb, /a/bbb all share the “/a” prefix

5/31/2009 15

Protection systemsy
• FS must implement some kind of protection system

t t l h fil ()» to control who can access a file (user)
» to control how they can access it (e.g., read, write, or exec)

• More generally:g y
» generalize files to objects (the “what”)
» generalize users to principals (the “who”, user or program)
» generalize read/write to actions (the “how” or operations)» generalize read/write to actions (the how , or operations)

• A protection system dictates whether a given action
performed by a given principal on a given object should
be allo edbe allowed
» e.g., you can read or write your files, but others cannot
» e.g., your can read /etc/motd but you cannot write to it

5/31/2009 16

The original Unix file systemg y

• Dennis Ritchie and Ken Thompson, Bell Labs, 1969
• “UNIX rose from the ashes of a multi-organizational effort in

the early 1960s to develop a dependable timesharing operating
system” -- Multicssystem Multics

• Designed for a “workgroup” sharing a single system
• Did its job exceedingly well

» Although it has been stretched in many directions and made ugly in the
process

• A wonderful study in engineering tradeoffsA wonderful study in engineering tradeoffs

5/31/2009 17

All Unix disks are divided into five parts

• Boot block
» can boot the system by loading from this block» can boot the system by loading from this block

• Superblock
» specifies boundaries of next 3 areas, and contains head of

freelists of inodes and file blocksfreelists of inodes and file blocks
• i-node area

» contains descriptors (i-nodes) for each file on the disk; all i-
nodes are the same size; head of freelist is in the superblocknodes are the same size; head of freelist is in the superblock

• File contents area
» fixed-size blocks; head of freelist is in the superblock

• Swap area
» holds processes that have been swapped out of memory

5/31/2009 18

So …

• You can attach a disk to a dead system …y
• Boot it up …
• Find create and modify files• Find, create, and modify files …

» because the superblock is at a fixed place, and it
tells you where the i-node area and file contentstells you where the i-node area and file contents
area are

» by convention the second i-node is the root» by convention, the second i node is the root
directory of the volume

5/31/2009 19

i-node format
• User number

Gro p n mber• Group number
• Protection bits
• Times (file last read, file last written, inode last written)
• File code: specifies if the i-node represents a directory, an

ordinary user file, or a “special file” (typically an I/O
device))

• Size: length of file in bytes
• Block list: locates contents of file (in the file contents area)

» more on this soon!» more on this soon!
• Link count: number of directories referencing this i-node

5/31/2009 20

The flat (i-node) file system() y

• Each file is known by a number, which is the y
number of the i-node
» seriously – 1, 2, 3, etc.!y , , ,
» why is it called “flat”?

• Files are created empty and grow whenFiles are created empty, and grow when
extended through writes

5/31/2009 21

The tree (directory, hierarchical) file system(y) y

• A directory is a flat file of fixed-size entries
h i f i d b d fil• Each entry consists of an i-node number and a file

name i-node number File name
152 .
18 ..

216 my file216 my_file
4 another_file
93 oh_my_god

144 a_directory

5/31/2009 22

• It’s as simple as that!

The “block list” portion of the i-nodep
• Clearly it points to blocks in the file contents area
• Must be able to represent very small and very large filesMust be able to represent very small and very large files.

How?
• Each inode contains 15 block pointers

fi t 12 di t bl k (i 4KB bl k f fil d t)» first 12 are direct blocks (i.e., 4KB blocks of file data)
» then, single, double, and triple indirect indexes

0
1 …

…

…

12
13
14

…

…

… …

5/31/2009 23

…

…

So …
• Only occupies 15 x 4B in the i-node
• Can get to 12 x 4KB = a 48KB file directlyg y

» (12 direct pointers, blocks in the file contents area are 4KB)
• Can get to 1024 x 4KB = an additional 4MB with a single

indirect referenceindirect reference
» (the 13th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to blocks holding
file data)

• Can get to 1024 x 1024 x 4KB = an additional 4GB with a
double indirect reference
» (the 14th pointer in the i-node gets you to a 4KB block in the (p g y

file contents area that contains 1K 4B pointers to 4KB blocks in
the file contents area that contian 1K 4B pointers to blocks
holding file data)

M i fil i i 4TB• Maximum file size is 4TB
5/31/2009 24

File system consistencyy y

• Both i-nodes and file blocks are cached in
memory

• The “sync” command forces memory-resident
di k i f ti t b itt t di kdisk information to be written to disk
» system does a sync every few seconds

• A crash or power failure between sync’s can leave• A crash or power failure between sync’s can leave
an inconsistent disk

• You could reduce the frequency of problems by• You could reduce the frequency of problems by
reducing caching, but performance would suffer
big-time

5/31/2009 25

g

i-check: consistency of the flat file systemy y

• Is each block on exactly one list?
bi i h i h» create a bit vector with as many entries as there are

blocks
» follow the free list and each i-node block list
» when a block is encountered, examine its bit

• If the bit was 0, set it to 1
• if the bit was already 1if the bit was already 1

if the block is both in a file and on the free list, remove it from the
free list and cross your fingers

if the block is in two files, call support!
» if there are any 0’s left at the end, put those blocks on

the free list

5/31/2009 26

d-check: consistency of the directory file systemy y y

• Do the directories form a tree?
• Does the link count of each file equal the

number of directories links to it?number of directories links to it?
» I will spare you the details

• uses a zero-initialized vector of counters, one per i-uses a zero initialized vector of counters, one per i
node

• walk the tree, then visit every i-node

5/31/2009 27

Protection

• Objects: individual filesj
• Principals: owner/group/world
• Actions: read/write/execute• Actions: read/write/execute

• This is pretty simple and rigid, but it has
proven to be about what we can handle!

5/31/2009 28

