
Demand Paging & Page
ReplacementReplacement

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 1

Readings and Referencesg

• Reading g
» Chapter 9 through 9.4.5, Operating System Concepts, Silberschatz,

Galvin, and Gagne

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 2

Virtual Memoryy

• Page table entry can
VPN
0
1

0
1

memory

g y
point to a PPN or a
location on disk (offset

1
2
3
4

1
2
3
4into page file)

• A page on disk is
d b k i h

4
5
6
7

4
5
6

swapped back in when
it is referenced but is
not actually present in

7
8
9

10

0
1

page file

not actually present in
main memory
» page fault

10 2
3
4
5p g 5
6

Demand Pagingg g

• As a program runs, the memory pages that it p g y p g
needs may or may not be in memory when it
needs them
» if in memory, execution proceeds
» if not in memory, page is read in from disk and y, p g

stored in memory
• If desired address is not in memory, the resultIf desired address is not in memory, the result

is a page fault

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 4

A reference to memory location Xy
• MMU: Is X's VPN in the Translation Lookaside Buffer?

» Yes => get data from cache or memory Done» Yes => get data from cache or memory. Done.
» No => Trap to OS to load X's VPN/PPN into the TLB

• OS/hardware: Is X's page actually in physical memory?
Y l TLB i h X' VPN/PPN R l» Yes => replace a TLB entry with X's VPN/PPN. Return control to
original thread and restart instruction. (MIPS: software, x86: hardware)
Done.

» No => must load the page from disk» No => must load the page from disk
• OS: replace a current page in memory with X’s page from disk

» pick a page to replace, write it back to disk if dirty
l d X' f di k i h i l» load X's page from disk into physical memory

» Replace the TLB entry with X's VPN/PPN.
» Return control to original thread and restart instruction. Done!

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 5

Page Fault Example
VPN memory VPN memory VPN memoryVPN
0
1
2

0
1
2

memory VPN
0
1
2

0
1
2

memory VPN
0
1
2

0
1
2

memory

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
55

6
7
8

6

0
page file

5
6
7
8

6

0
page file

5
6
7
8

6

0
page file

9
10

0
1
2
3

9
10

0
1
2
3

9
10

0
1
2
3

4
5
6

4
5
6

4
5
6

Reference to VPN 10
causes a page fault
because it is not in memory.

PPN 6 has not been
used recently. Write it
to the page file.

Read VPN 10 from the
page file into physical
memory at PPN 6.

Evicting the best pageg p g

• Page replacement: need to evict some page to free
a page frame

• Goal: minimize fault rate by selecting best page to
i tevict

» Best is one that will never be touched again!
• Belady’s algorithm (min): evict the page that• Belady’s algorithm (min): evict the page that

won’t be used for the longest period of time
» provably optimal minimizes page fault rate» provably optimal, minimizes page fault rate
» Can’t implement (requires clairvoyance)

• So need to find some feasible approximationpp
5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 7

Replacement Algorithmsp g

• FIFO - First In, First Out
» throw out the oldest page
» rationale: it’s been around a long time, less likely g , y

to be currently used
» then again, it might be quite active; we have no g , g q ;

information either way
» Belady’s Anomaly: fault rate might increase when

FIFO is given more physical memory!
• a very bad property

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 8

LRU & LRU Clock

• LRU - Least Recently Usedy
» exploits temporal locality

• if we have used a page recently, we probably will use it
again in the near future

» LRU is hard to implement exactly since there is
i ifi d k i h dsignificant record keeping overhead

• CLOCK - approximation of LRU
» and LRU is an approximation of MIN

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 9

Perfect LRU

• Least Recently Usedy
» timestamp each page on every reference
» on page fault, find oldest pagep g , p g
» can keep a queue ordered by time of reference

• but that requires updating the queue on every referenceq p g q y

» too much overhead per memory reference

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 10

LRU Approximation: Clockpp

• Clock algorithmg
» replace an old page, not necessarily the oldest

page
• Keep a reference bit for every physical page

» memory hardware sets the bit on every reference» memory hardware sets the bit on every reference
» bit isn't set => page not used since bit last cleared

• Maintain a “next victim” pointer• Maintain a next victim pointer
» can think of it as a clock hand, iterating over the

collection of physical pages
5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 11

collection of physical pages

Tick, tick, ..., ,

• On page fault (we need to replace somebody)p g (p y)
» advance the victim pointer to the next page
» check state of the reference bit
» If set, clear the bit and go to next page

• this page has been used since the last time we looked. p g
Clear the usage indicator and move on.

» If not set, select this page as the victim
• this page has not been used since we last looked
• replace it with a new page from disk

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 12

Find a victimFind a victim
11

0

16

7
00

0

16

7
00

0

16

7

0

1

10

1

0

1

25

6

0

1

10

1

0

1

25

6

0

1

00

1

0

1

25

6

00
34

00

34
00

34

advance; PPN 0 has
been used; clear and

PPN 1 has been used;
clear and advance

PPN 2 has been used;
clear and advance

0

00

0

0

16

7

0

00

0

0

16

7
been used; clear and
advance

clear and advance clear and advance

0

01

0
2

34

5
1

01

0
2

34

5

3
PPN 3 has been not
been used; replace

PPN 3 use bit set on
next memory reference

Clock QuestionsQ

• Will Clock always find a page to replace?y p g p
» at worst it will clear all the reference bits, finally

coming around to the oldest page
• If the hand is moving slowly?

» not many page faults» not many page faults
• If the hand is moving quickly?

» many page faults» many page faults
» lots of reference bits set

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 14

Thrashingg
• Thrashing occurs when pages are tossed

out but are needed again right awayout, but are needed again right away
» listen to the hard drive grind

• Example: a program touches 50 pages
f b h l h i l

throughput
often but there are only 40 physical pages
in system

• What happens to performance?pp p
» enough memory 200 ps/ref (most refs hit in

cache)
» not enough memory 10 ms/ref (page faults

number of processesevery few instructions) number of processes

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 15

Thrashing Solutionsg

• If one job causes thrashingj g
» rewrite program to have better locality of

reference
• If multiple jobs cause thrashing

» only run as many processes as can fit in memory» only run as many processes as can fit in memory
» swap out hogs if they can’t run without thrashing

and run when fewer processes activep
• Buy more memory

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 16

Working Setg

• The working set of a process is the set of pages that it
is actually using
» set of pages a job has used in the last T seconds
» usually much smaller than the amount it might use

• If working set fits in memory process won't thrash
• Why do we adjust the working set size?

» too big => inefficient because programs keep pages in
memory that they are not using very oftenmemory that they are not using very often

» too small => thrashing results because programs are losing
pages that they are about to use

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 17

Page Fault Frequency (PFF) Algorithmg q y () g

• We’ve glossed over issue of how to divide g
available page frames among contending
processesp

• One solution: PFF – allocate page frames
based on process working setsbased on process working sets
» Goal: minimize paging, avoid thrashing
» Issue: how do we do this fairly among contending» Issue: how do we do this fairly among contending

processes?
• Answer: ?

5/28/2009 cse410-27-virtualmemory © 2006-09 Perkins, DW Johnson and University of Washington 18

