
Deadlock

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 1

Readings and Referencesg

• Reading g
» Chapter 7, Operating System Concepts, Silberschatz, Galvin, and

Gagne

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 2

6/2/2009 3(Is Google the greatest, or what?)

Definition
• A thread is deadlocked when it’s waiting for an event

that can never occurthat can never occur
» I’m waiting for you to clear the intersection, so I can

proceed
b t ’t til h d h ’t til h• but you can’t move until he moves, and he can’t move until she
moves, and she can’t move until I move

» thread A is in critical section 1, waiting for access to
critical section 2; thread B is in critical section 2, waitingcritical section 2; thread B is in critical section 2, waiting
for access to critical section 1

» I’m trying to book a vacation package to Tahiti – air
transportation, ground transportation, hotel, side-trips. It’stransportation, ground transportation, hotel, side trips. It s
all-or-nothing – one high-level transaction – with the four
databases locked in that order. You’re trying to do the
same thing in the opposite order.

6/2/2009 4

Resource graphg p

• A deadlock exists if there is an irreducible cycle in
th h (h th b)

6/2/2009 5

the resource graph (such as the one above)

Necessary Conditions for Deadlocky
• Mutual Exclusion

» The resource can’t be shared» The resource can t be shared

• Hold and Wait
» Task holds one resource while waiting for another» Task holds one resource while waiting for another

• No Preemption
» If a task has a resource it cannot be forced to give it up» If a task has a resource, it cannot be forced to give it up

• Circular Wait
» A waits for B, B for C, C for D, D for A

CA B

» A waits for B, B for C, C for D, D for A

D

Dealing with Deadlockg

• Deadlock Prevention
» Ensure statically that deadlock is impossible

• Deadlock Avoidance
» Ensure dynamically that deadlock is impossible

• Deadlock Detection and Recovery
» Allow deadlock to occur, but notice when it does and try to

recover

• Ignore the Problem• Ignore the Problem
» Let the operator untangle it, that's what they're paid for

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 7

Deadlock Prevention

• There are four necessary conditions for y
deadlock

• Take any one of them away and deadlock isTake any one of them away and deadlock is
impossible

• Let’s attack deadlock by• Let s attack deadlock by
» examining each of the conditions

id i h t ld h if th it t» considering what would happen if we threw it out

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 8

Condition: Mutual Exclusion

• Usually can't eliminate this conditiony
» some resources are intrinsically non-sharable

• Examples include printer write access to a fileExamples include printer, write access to a file
or record, entry into a section of code

• However you can often mitigate this by• However, you can often mitigate this by
adding a layer of abstraction

F l it t f j b f h d» For example, write to a queue of jobs for a shared
resource instead of locking the resource to write

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 9

Condition: Hold and Wait
• Eliminate partial acquisition of resources

k i ll h i d b f i• Task must acquire all the resources it needs before it
does anything
» if it can’t get them all then it gets none» if it can’t get them all, then it gets none

• Issue: Resource utilization may be low
» If you need P for a long time and Q only at the end you still» If you need P for a long time and Q only at the end, you still

have to hold Q’s lock the whole time

• Issue: Starvation pronessue: S v o p o e
» May have to wait indefinitely before popular resources are all

available at the same time

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 10

Condition: No Preemptionp

• Allow preemption
» If a process asks for a resource not currently available,

block it and take away all of its other resources
» Add the preempted resources to the list of resources the» Add the preempted resources to the list of resources the

process is waiting for
• This strategy works for some resources:

» CPU state (contents of registers can be spilled to memory)
» memory (can be spilled to disk)

• But not for others:• But not for others:
» printer - rip off the existing printout and tape it on later?

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 11

Condition: Circular Wait

• To attack the circular wait condition:
» Assign each resource a priority
» Make processes acquire resources in priority order

• Two processes need the printer and the scanner both• Two processes need the printer and the scanner, both
must acquire the printer (higher priority) before the
scanner

• This is a common form of deadlock prevention
• A problem: sometimes forced to relinquish a resource

that you thought you had locked up
• A problem: sometimes (often?) impossible to assign a

global total order on resources/priorities
6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 12

global, total order on resources/priorities

Deadlock Avoidance

• Deadlock prevention is often too strictp
» low device utilization
» reduced system throughputy g p

• If the OS had more information, it could do
more sophisticated things to avoid deadlockmore sophisticated things to avoid deadlock
and keep the system in a safe state
» “If” is a little word but it packs a big punch» If is a little word, but it packs a big punch
» predicting all needed resources a priori is hard

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 13

The Banker’s Algorithmg

• Idea: know what each
process might ask for

• Only makeOnly make
allocations that leave
the system in a safe unsafe

deadlock

the system in a safe
state

• Inefficient
safe

unsafe

• Inefficient

Resource allocation
t t

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 14

state space

Deadlock Detection

• Build a wait-for graph and
A waits for B
B waits for D

periodically look for cycles, to
find the circular wait condition

D waits for A
deadlock!

• The wait-for graph contains:
» nodes, corresponding to tasks

di t d d di t

E

» directed edges, corresponding to
a resource held by one task and
desired by the other

CA B

D

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 15

Deadlock Recoveryy

• Once you’ve discovered deadlock, what next?
• Terminate one of the tasks to stop circular wait?

» Task will likely have to start over from scratch
Whi h t k h ld h ?» Which task should you choose?

• Take a resource away from a task?
» Again which task should you choose?» Again, which task should you choose?
» How can you roll back the task to the state before it had

the coveted resource?
M k d ’ k i f h» Make sure you don’t keep on preempting from the same
task: avoid starvation

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 16

Ignoring Deadlockg g

• Not always a bad policy for operating systemsy p y p g y
• The mechanisms outlined previously for

handling deadlock may be expensivehandling deadlock may be expensive
» if the alternative is to have a forced reboot once a

year, that might be acceptabley , g p
• However, for thread deadlocks, your users

may not be quite so tolerantmay not be quite so tolerant
» “the program only locks up once in a while”

6/2/2009 cse410-25-deadlock © 2006-09 Perkins, DW Johnson and University of Washington 17

