
Synchronizationy

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

5/19/2009 cse410-23-synchronization-p1 © 2006-09 Perkins DW Johnson and University of Washington 1

Readings and Referencesg

• Reading g
» Chapter 6, Operating System Concepts, Silberschatz, Galvin, and

Gagne. Read 6.1, 6.2, 6.3 (skim), 6.4-6.5, 6.6 (skim), 6.7

5/19/2009 cse410-23-synchronization-p1 © 2006-09 Perkins DW Johnson and University of Washington 2

Synchronizationy
• Threads cooperate in multithreaded programs

t h h d d t t t» to share resources, access shared data structures
• e.g., threads accessing a memory cache in a web server

» also, to coordinate their execution
• e g a disk reader thread hands off blocks to a network writer thread through a• e.g., a disk reader thread hands off blocks to a network writer thread through a

circular buffer

network
disk

reader
thread

writer
thread

circular
buffer

5/19/2009 3

Synchronizationy
• For correctness, we have to control this cooperation

t th d i t l ti bit il d t diff t t» must assume threads interleave executions arbitrarily and at different rates
• Modern OS’s are preemptive
• scheduling is not under application writers’ control (except for real-time, but that’s

not of interest here).)

• We control cooperation using synchronization
» enables us to restrict the interleaving of executions

• Note: this also applies to processes, not just threads
» (I may never say “process” again! Then again, I might say it a lot.)» (I may never say process again! Then again, I might say it a lot.)

• It also applies across machines in a distributed system

5/19/2009 4

Shared resources
• We’ll focus on coordinating access to

shared reso rcesshared resources
» basic problem:

h d i h d• two concurrent threads are accessing a shared
variable

• if the variable is read/modified/written by bothif the variable is read/modified/written by both
threads, then access to the variable must be
controlled

h i d l• otherwise, unexpected results may occur

5/19/2009 5

The classic examplep

• Suppose we have to implement a function to
withdraw money from a bank account:
int withdraw(account, amount) {
int balance = get_balance(account);
balance amount;balance -= amount;
put_balance(account, balance);
return balance;

}

• Now suppose that you and your S.O. share a bank
account with a balance of $100.00

h h if b h ATM» what happens if you both go to separate ATM
machines, and simultaneously withdraw $10.00 from
the account?

5/19/2009 6

Your Bank’s Computerp

• Represent the situation by creating a separate thread for each
d h i hd lperson to do the withdrawals

» have both threads run on the same bank mainframe:
int withdraw(account, amount) { int withdraw(account, amount) {(,) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

(,) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

return balance;

}

return balance;

}

5/19/2009 7

Interleaved schedules
• The problem is that the execution of the two threads

can be interleaved assuming preemptive scheduling:can be interleaved, assuming preemptive scheduling:
balance = get_balance(account);

balance -= amount;
t t it h

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

Execution sequence
as seen by CPU

context switch

context switch

• What’s the account balance after this sequence?

put_balance(account, balance);

What s the account balance after this sequence?
» who’s happy, the bank or you?

• How often is this unfortunate sequence likely to occur?

5/19/2009 8

The crux of the matter
• The problem is that two concurrent threads (or

processes) access a shared resource (account) withoutprocesses) access a shared resource (account) without
any synchronization
» creates a race condition

i d i i i d d i i• output is non-deterministic, depends on timing
• We need mechanisms for controlling access to shared

resources in the face of concurrency
» so we can reason about the operation of programs

• essentially, re-introducing determinism
• Synchronization is necessary for any shared data Sy c o at o s ecessa y o a y s a ed data

structure
» buffers, queues, lists, hash tables, scalars, …

5/19/2009 9

What resources are shared?

• Local variables are not shared
» refer to data on the stack, each thread has its own

stack
» never pass/share/store a pointer to a local variable on» never pass/share/store a pointer to a local variable on

another thread’s stack!
• Global variables are shared

» stored in the static data segment, accessible by any
thread

• Dynamic objects are shared
» stored in the heap, shared if you can name it

5/19/2009 10

Mutual exclusion

• We want to use mutual exclusion to synchronize access
t h dto shared resources

• Mutual exclusion makes reasoning about program
behavior easierbehavior easier
» making reasoning easier leads to fewer bugs

• Code that uses mutual exclusion to synchronize its
execution is called a critical section
» only one thread at a time can execute in the critical section
» all other threads are forced to wait on entry» all other threads are forced to wait on entry
» when a thread leaves a critical section, another can enter

5/19/2009 11

Critical section requirementsq
• Critical sections have the following requirements

t l l i» mutual exclusion
• at most one thread is in the critical section

» progress
if h d T i id h i i l i h T• if thread T is outside the critical section, then T cannot prevent
thread S from entering the critical section

» bounded waiting (no starvation)
• if thread T is waiting on the critical section then T will eventually• if thread T is waiting on the critical section, then T will eventually

enter the critical section
assumes threads eventually leave critical sections

• vs. fairness?
» performance

• the overhead of entering and exiting the critical section is small
with respect to the work being done within it

5/19/2009 12

Mechanisms for building critical sectionsg
• Locks

» very primitive, minimal semantics; used to build others
S h• Semaphores
» basic, easy to get the hang of, hard to program with

• Monitors
» high level, requires language support, implicit operations
» easy (easier) to program with; Java synchronized() as an

example
• Messages

» simple model of communication and synchronization based on
(atomic) transfer of data across a channel

» direct application to distributed systems

We will survey the first three

5/19/2009 13

y

Locks
• A lock is an object (in memory) that provides the following

two operations:two operations:
» acquire(): a thread calls this before entering a critical section
» release(): a thread calls this after leaving a critical section

• Threads pair up calls to acquire() and release()
» between acquire()and release(), the thread holds the lock
» acquire() does not return until the caller holds the lockq ()

• at most one thread can hold a lock at a time (usually)
» so: what can happen if the calls aren’t paired?

T b i fl f l k• Two basic flavors of locks
» spinlock
» blocking (a.k.a. “mutex”)

5/19/2009 14

Using locksg

int withdraw(account, amount) {

acquire(lock)

balance = get_balance(account);

acquire(lock);

balance = get_balance(account);

balance -= amount;

b l (b l)

balance -= amount;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

put_balance(account, balance);

release(lock);

return balance;

}

balance = get_balance(account);

balance -= amount;

put balance(account, balance);

release(lock);c s

Wh t h h t i t i th l k?

put_balance(account, balance);

release(lock);

• What happens when green tries to acquire the lock?
• Why is the “return” outside the critical section?

» is this ok?

5/19/2009 15

» is this ok?

Spinlocksp

• How do we implement locks? Here’s one attempt:
struct lock {

int held = 0;

}

void acquire(lock) { the caller “busy-waits”
while (lock->held);

lock->held = 1;

}

void release(lock) {

the caller busy waits ,
or spins, for lock to be
released ⇒ hence spinlock

lock->held = 0;

}

• Why doesn’t this work?
» where is the race condition?

5/19/2009 16

Implementing locks (cont.)p g ()
• Problem is that implementation of locks has

iti l ti t !critical sections, too!
» the acquire/release must be atomic

• atomic == executes as though it could not be interruptedg p
• code that executes “all or nothing”

• Need help from the hardware
atomic instr ctions» atomic instructions
• test-and-set, compare-and-swap, …
• see text for examples

» disable/reenable interrupts
• to prevent context switches
• crude – and can only be done in the kernel

5/19/2009 17

y

Summary so fary

• Synchronization can be provided by locks, semaphores,
itmonitors, messages …

• Locks are the lowest-level mechanism
» very primitive in terms of semantics error prone» very primitive in terms of semantics – error-prone
» implemented by spin-waiting (crude) or by disabling

interrupts (also crude, and can only be done in the kernel)
• In our next exciting episode …

» semaphores are a slightly higher level abstraction
• less crude implementation too• less crude implementation too

» monitors are significantly higher level
• utilize programming language support to reduce errors

5/19/2009 18

Semaphoresp
• Semaphore = a synchronization primitive

hi h l l f b i h l k» higher level of abstraction than locks
» invented by Dijkstra in 1968, as part of the THE

operating systemp g y
• A semaphore is:

» a variable that is manipulated through two operations,
P and V (Dutch for “test” and “increment”)P and V (Dutch for “test” and “increment”)
• P(sem) (wait)

block until sem > 0, then subtract 1 from sem and proceed
V() (i l)• V(sem) (signal)
add 1 to sem

• Do these operations atomically

5/19/2009 19

Blocking in semaphoresg p
• Each semaphore has an associated queue of threads

» when P(sem) is called by a thread,» when P(sem) is called by a thread,
• if sem was “available” (>0), decrement sem and let thread

continue
• if sem was “unavailable” (<=0), place thread on associated queue;

di t h th bl th ddispatch some other runnable thread
» when V(sem) is called by a thread

• if thread(s) are waiting on the associated queue, unblock one
place it on the ready queueplace it on the ready queue
might as well let the “V-ing” thread continue execution
or not, depending on priority

• otherwise (when no threads are waiting on the sem),
iincrement sem

the signal is “remembered” for next time P(sem) is called

• Semaphores thus have history

5/19/2009 20

Abstract implementationp
» P/wait/(sem)

• acquire “real” mutual exclusionacquire real mutual exclusion
if sem is “available” (>0), decrement sem; release “real” mutual

exclusion; let thread continue
otherwise, place thread on associated queue; release “real” mutual , p q ;

exclusion; run some other thread

» V/signal(sem)
• acquire “real” mutual exclusionacquire real mutual exclusion

if thread(s) are waiting on the associated queue, unblock one
(place it on the ready queue)

if no threads are on the queue, sem is incrementedq ,
the signal is “remembered” for next time P(sem) is called

• release “real” mutual exclusion
• [the “V-ing” thread continues execution or is preempted]

5/19/2009 21

[the V ing thread continues execution or is preempted]

Two types of semaphoresyp p

• Binary semaphore (aka mutex semaphore)
» sem is initialized to 1
» guarantees mutually exclusive access to resource (e.g., a

critical section of code))
» only one thread/process allowed entry at a time

C ti h• Counting semaphore
» sem is initialized to N

• N = number of units available
» represents resources with many (identical) units available
» allows threads to enter as long as more units are available

5/19/2009 22

Usageg
• From the programmer’s perspective, P and V on a binary semaphore are

just like Acquire and Release on a lockjust like Acquire and Release on a lock
P(sem)

...
do whatever stuff requires mutual exclusion; could conceivablydo whatever stuff requires mutual exclusion; could conceivably
be a lot of code
...

V(sem)
» same lack of programming language support for correct usage

• Important differences in the underlying implementation, however

5/19/2009 23

Semaphores vs. Locksp

• Threads that are blocked by the semaphore P
operation are placed on queues, rather than busy-
waiting

• Busy-waiting may be used for the “real” mutual
exclusion required to implement P and Vexclusion required to implement P and V
» but these are very short critical sections – totally

independent of program logicp p g g

5/19/2009 24

Problems with semaphores (and locks)p ()
• They can be used to solve any of the traditional

synchronization problems but:synchronization problems, but:
» semaphores are essentially shared global variables

• can be accessed from anywhere (bad software engineering)
th i ti b t th h d th d t» there is no connection between the semaphore and the data
being controlled by it

» used for both critical sections (mutual exclusion) and for
di ti (h d li)coordination (scheduling)

» no control over their use, no guarantee of proper usage

h h b• Thus, they are prone to bugs
» another (better?) approach: use programming language

support

5/19/2009 25

One More Approach: Monitorspp
• A monitor is a programming language construct that supports

controlled access to shared data
» synchronization code is added by the compiler» synchronization code is added by the compiler

• A monitor encapsulates:
» shared data structures
» procedures that operate on the shared data
» synchronization between concurrent threads that invoke those procedures

• Data can only be accessed from within the monitor using the provided• Data can only be accessed from within the monitor, using the provided
procedures
» protects the data from unstructured access

Add th k bilit i th t i ith h• Addresses the key usability issues that arise with semaphores

5/19/2009 26

A monitor

shared data

waiting queue of threads
trying to enter the monitor

Proc A
y g

Proc B

Proc C

operations (methods)at most one thread
in monitor at a

Proc C

5/19/2009 27

time

Monitor facilities
• “Automatic” mutual exclusion

» only one thread can be executing inside at any time
• thus, synchronization is implicitly associated with the

monitor – it “comes for free”monitor it comes for free

» if a second thread tries to execute a monitor
procedure, it blocks until the first has left the monitor
• more restrictive than semaphores
• but easier to use (most of the time)

• But, there’s a problem…

5/19/2009 28

Example: Bounded Buffer Scenariop

Produce()

Consume()

• Buffer is empty
• Now what?

5/19/2009 29

Example: Bounded Buffer Scenariop

Produce()

Consume()

• Buffer is full
• Now what?

5/19/2009 30

Condition variables
• A place to wait; sometimes called a rendezvous point
• “Required” for monitors• Required for monitors

» So useful they’re often provided even when monitors
aren’t available

• Three operations on condition variables• Three operations on condition variables
» wait(c)

• release monitor lock, so somebody else can get in
• wait for somebody else to signal conditionwait for somebody else to signal condition
• thus, condition variables have associated wait queues

» signal(c)
• wake up at most one waiting thread
• if no waiting threads, signal is lost

this is different than semaphores: no history!
» broadcast(c)

• wake up all waiting threads

5/19/2009 31

wake up all waiting threads

A monitor (including CVs)

wait queue for cond var

shared data

wait queue for cond. var.
buff_empty

waiting queue of threads
trying to enter the monitor

Proc A
y g

Proc B

Proc C

operations (methods)at most one thread
in monitor at a

Proc C

5/19/2009 32

time

Bounded buffer using (Hoare) monitorsg ()
Monitor bounded_buffer {
buffer resources[N];[];
condition not_full, not_empty;

produce(resource x) {
if (array “resources” is full)if (array resources is full)

wait(not_full);
insert “x” in array “resources”
signal(not_empty);

}

consume(resource *x) {
if (array “resources” is empty)

wait(not_empty);
*x = get resource from array “resources”
signal(not_full);

}

5/19/2009 33

}

Monitor Summaryy
• Language supports monitors

C il d t d th• Compiler understands them
» compiler inserts calls to runtime routines for

• monitor entry
• monitor exit
• signal
• Wait

L / bj l i» Language/object encapsulation ensures correctness
• Sometimes! With conditions you STILL need to think about

synchronization and state of monitor invariants on wait/signal
R ti t i l t th ti• Runtime system implements these routines
» moves threads on and off queues
» ensures mutual exclusion!

5/19/2009 34

