
Process Schedulingg

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

5/17/2009 cse410-21-scheduling © 2006-09 Perkins, DW Johnson and University of Washington 1



Readings and Referencesg

• Reading g
» Operating System Concepts

• Chapter 5, Secs. 5.1-5.5
• Skim math for cultural enrichment; we won’t have time to go into scheduling 

theory

5/17/2009 cse410-21-scheduling © 2006-09 Perkins, DW Johnson and University of Washington 2



Schedulingg

• In discussing processes and threads, we talked 
about context switching
» an interrupt occurs (device completion, timer, …)

th d ti ( t f lt)» a thread causes an exception (a trap or a fault)
• We glossed over the choice of which thread is 

chosen to be run nextchosen to be run next
» “some thread from the ready queue”

• This decision is called schedulingThis decision is called scheduling
• context switching is a mechanism inside the OS
• scheduling is a policy

5/17/2009 3



Scheduling Goalsg
• Keep the CPU(s) busy

M i i th h t (“ t ” d)• Maximize throughput (“requests” per second)
• Minimize latency

» Time between responses» Time between responses
» Time for entire “job”

• Favor some particular class (foreground window, 
interactive vs CPU bound)interactive vs CPU-bound)

• Avoid jitter (video)
• Keep the airplane in the sky ☺p p y
• Be fair (no starvation or inversion)
• THESE MAY CONFLICT

5/17/2009 4



Classes of Schedulers
• Batch

» Throughput / utilization oriented
» Example: audit inter-bank funds transfers each night Pixar rendering» Example: audit inter-bank funds transfers each night, Pixar rendering

• Interactive
» Response time oriented

• Hard Real Time
» Deadline driven
» Example: embedded systems (cars, airplanes, etc.)

• Soft Real Time
» Video TIVO etc» Video, TIVO, etc.

• Parallel
» Speedup driven
» Example: “space-shared” use of a 1000-processor machine for large simulations

• Others…

We’ll be talking primarily about interactive schedulers
(as does the text)

5/17/2009 5

(as does the text).



Multiple levels of scheduling decisionsp g
• Long term

» Should a new “job” be “initiated,” or should it be held?
» typical of batch systems
» what might cause you to make a “hold” decision?

• Medium term• Medium term
» Should a running program be temporarily marked as 

non-runnable (e.g., swapped out)?
Sh t t• Short term
» Which thread should get the CPU next?  For how long?
» Which I/O operation should be sent to the disk next?p
» On a multiprocessor:

• should we attempt to coordinate the running of threads from 
the same address space in some way?

5/17/2009 6

• should we worry about cache state (processor affinity)?



Scheduling Goals I: Performanceg

• Many possible metrics / performance goals 
(which sometimes conflict)
» maximize CPU utilization
» maximize throughput (requests completed/sec)
» minimize average response time (average time from 

submission of request to completion of response)
» minimize average waiting time (average time from 

submission of request to start of execution)submission of request to start of execution)
» minimize energy (joules per instruction) subject to 

some constraint (e.g., frames/second)some constraint (e.g., frames/second)
5/17/2009 7



Scheduling Goals II: Fairnessg
• No single, compelling definition of “fair”

f i ?» How to measure fairness?
• Equal CPU consumption? (over what time scale?)

» Fair per-user? per-process? per-thread?p p p p
» What if one thread is CPU bound and one is IO 

bound?
• Sometimes the goal is to be unfair:• Sometimes the goal is to be unfair:

» Explicitly favor some particular class of requests 
(priority system), but…

» avoid starvation (be sure everyone gets at least some 
service)

5/17/2009 8



The basic situation

Scheduling:
- Who to assign each resource to

h l

•••

••• - When to re-evaluate your 
decisions

Schedulable units Resources

5/17/2009 9



When to assign?g
• Pre-emptive vs. non-preemptive schedulers 

» Non-preemptive» Non-preemptive
• once you give somebody the green light, they’ve got it until they relinquish it

• an I/O operation
• allocation of memory in a system without swapping

» Preemptive» Preemptive
• you can re-visit a decision

• setting the timer allows you to preempt the CPU from a thread even if it doesn’t 
relinquish it voluntarily

• in any modern system, if you mark a program as non-runable, its memory resources will 
eventually be re-allocated to others

• Re-assignment always involves some overhead
• Overhead doesn’t contribute to the goal of any scheduler

W ’ll “ k i ” li i• We’ll assume “work conserving” policies
» Never leave a resource idle when someone wants it

• Why even mention this?  When might it be useful to do something else?

5/17/2009 10



Algorithm #1: FCFS/FIFOg
• First-come first-served / First-in first-out (FCFS/FIFO)

» schedule in the order that they arrive» schedule in the order that they arrive
» “real-world” scheduling of people in (single) lines

• supermarkets, bank tellers, McD’s, Starbucks …
(sometimes we separate job classes – DMV)( p j )

» typically non-preemptive
• no context switching at supermarket!

» jobs treated equally, no starvation
• In what sense is this “fair”?

• Sounds perfect!p
» in the real world, when does FCFS/FIFO work well?

• even then, what’s it’s limitation?
» and when does it work badly?

5/17/2009 11



FCFS/FIFO examplep

Job A B C

time

1

CB Job A2

• Suppose the duration of A is 5, and the durations of B 
and C are each 1
» average response time for schedule 1 (assuming A, B, 

d C ll i b i 0) i (5 6 7)/3 18/3 6
g p ( g

and C all arrive at about time 0) is (5+6+7)/3 = 18/3 = 6
» average response time for schedule 2 is (1+2+7)/3 = 10/3 

= 3.3
» consider also “elongation factor” a “perceptual”» consider also “elongation factor” – a “perceptual” 

measure:
• Schedule 1:  A is 5/5, B is 6/1, C is 7/1 (worst is 7, ave is 4.7)
• Schedule 2:  A is 7/5, B is 1/1, C is 2/1 (worst is 2, ave is 1.5)

5/17/2009 12

, , ( , )



FCFS/FIFO drawbacks

• Average response time can be lousyg p y
» small requests wait behind  big ones

• May lead to poor utilization of other resourcesMay lead to poor utilization of other resources
» if you send me on my way, I can go keep another 

resource busyresource busy
» FCFS may result in poor overlap of CPU and I/O 

activityy

5/17/2009 13



Algorithm #2: SPT/SJFg

• Shortest processing time first / Shortest job p g j
first (SPT/SJF)
» choose the request with the smallest service q

requirement
• Provably optimal with respect to average y p p g

response time

5/17/2009 14



SPT/SJF optimalityp y
sf sg

tk tk+sf tk+sf+sg

• In any schedule that is not SPT/SJF, there is 
dj t i f t f d h thsome adjacent pair of requests f and g where the 

service time (duration) of f, sf, exceeds that of g, 
sgg

• The total contribution to average response time 
of f and g is 2tk+2sf+sg
If i h f d h i l• If you interchange f and g, their total 
contribution will be 2tk+2sg+sf, which is smaller 
because sg < sf

5/17/2009 15

g f



SPT/SJF drawbacks
• It’s non-preemptive 

» So?» So?
• … but there’s a preemptive version – SRPT 

(Shortest Remaining Processing Time first) –
that accommodates arrivals (rather than 
assuming all requests are initially available)

• Sounds perfect!
» what about starvation?
» can you know the processing time of a request?
» can you guess/approximate?  How?

5/17/2009 16



Algorithm #3: RRg
• Round Robin scheduling (RR)

» ready queue is treated as a circular FIFO queuey q q
» each request is given a time slice, called a quantum

• request executes for duration of quantum, or until it blocks
• what signifies the end of a quantum?g q

• time-division multiplexing (time-slicing)
» great for timesharing

• no starvation

• Sounds perfect!
» how is RR an improvement over FCFS?» how is RR an improvement over FCFS?
» how is RR an improvement over SPT?
» how is RR an approximation to SPT?
» what are the warts?

5/17/2009 17

» what are the warts?



RR drawbacks

• What if all jobs are exactly the same length?
» What would the pessimal schedule be?

• What do you set the quantum to be?
» no value is “correct”

if ll h i h f i i hi h• if small, then context switch often, incurring high 
overhead

• if large, then response time degradesg , p g
» treats all jobs equally

• how might we fix this?

5/17/2009 18



Algorithm #4: Priorityg y
• Assign priorities to requests

» choose request with highest priority to run next» choose request with highest priority to run next
• if tie, use another scheduling algorithm to break (e.g., RR)

» to implement SJF, priority = expected length of CPU 
burstburst

• Abstractly modeled (and usually implemented) as y ( y p )
multiple “priority queues”
» put a ready request on the queue associated with its 

prioritypriority

• Sounds perfect!
5/17/2009 19

p



Priority drawbacksy

• How are you going to assign priorities?

• Starvation
if th i dl l f hi h i it j b l» if there is an endless supply of high priority jobs, no low-
priority job will ever run

• Solution:  “age” threads over time
» increase priority as a function of accumulated wait time

d i i f i f l d i» decrease priority as a function of accumulated processing 
time

» many ugly heuristics have been explored in this space

5/17/2009 20

y g y p p



Combining algorithmsg g

• In practice, any real system uses some sort of hybrid 
h ith l t f FCFS SPT RR dapproach, with elements of FCFS, SPT, RR, and 

Priority

• Example: multi-level feedback queues (MLFQ)
» there is a hierarchy of queues
» there is a priority ordering among the queues
» new requests enter the highest priority queue

h i h d l d RR» each queue is scheduled RR
» queues have different quanta
» requests move between queues based on execution history

5/17/2009 21

q q y



UNIX schedulingg
• Canonical scheduler is pretty much MLFQ

» 3 4 classes spanning 170 priority levels» 3-4 classes spanning ~170 priority levels
• timesharing: lowest 60 priorities
• system: middle 40 priorities
• real time: highest 60 priorities• real-time: highest 60 priorities

» priority scheduling across queues, RR within
• thread with highest priority always run first
• threads with same priority scheduled RR• threads with same priority scheduled RR

» threads dynamically change priority
• increases over time if thread blocks before end of quantum
• decreases if thread uses entire quantumdecreases if thread uses entire quantum

• Goals:
» reward interactive behavior over CPU hogs

i t ti j b t i ll h h t b t f CPU
5/17/2009 22

• interactive jobs typically have short bursts of CPU



Summaryy

• Scheduling takes place at many levels
• It can make a huge difference in performance

» this difference increases with the variability in service 
requirementsrequirements

• Multiple goals, sometimes (always?) conflicting
• There are many “pure” algorithms, most with some y p g ,

drawbacks in practice – FCFS, SPT, RR, Priority
• Real systems use hybrids
• Scheduling is still important, particularly in large-scale 

data centers – for reasons of both cost and energy

5/17/2009 23


