Threads

CSE 410, Spring 2009 Computer Systems

http://www.cs.washington.edu/410

Reading and References

- Reading
 - » Read sec. 4.1-4.2, rest of ch. 4 as background, *Operating System Concepts*, Silberschatz, Galvin, and Gagne

What's in a process?

- A process consists of (at least):
 - » an address space
 - » the code for the running program
 - » the data for the running program
 - » an execution stack and stack pointer (SP)
 - traces state of procedure calls made
 - » the program counter (PC), indicating the next instruction
 - » a set of general-purpose processor registers and their values
 - » a set of OS resources
 - open files, network connections, sound channels, ...
- That's a lot of concepts bundled together!

Concurrency

- Imagine a web server, which might like to handle multiple requests concurrently
 - » While waiting for the credit card server to approve a purchase for one client, it could be retrieving the data requested by another client from disk, and assembling the response for a third client from cached information
- Imagine a web client (browser), which might like to initiate multiple requests concurrently
 - » The CSE home page has 46 "src= …" html commands, each of which is going to involve a lot of sitting around! Wouldn't it be nice to be able to launch these requests concurrently?
- Imagine a parallel program running on a multiprocessor, which might like to concurrently employ multiple processors
 - » For example, multiplying a large matrix split the output matrix into k regions and compute the entries in each region concurrently using k processors

What's needed?

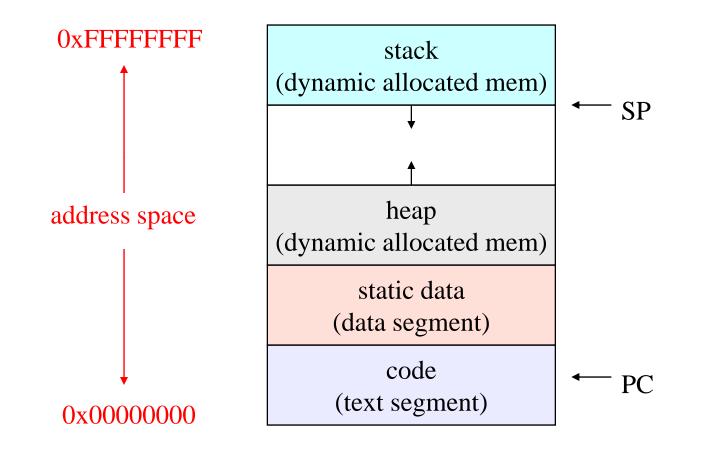
- In each of these examples of concurrency (web server, web client, parallel program):
 - » Everybody wants to run the same code
 - » Everybody wants to access the same data
 - » Everybody has the same privileges
 - » Everybody uses the same resources (open files, network connections, etc.)
- But you'd like to have multiple hardware execution states:
 - » an execution stack and stack pointer (SP)
 - traces state of procedure calls made
 - » the program counter (PC), indicating the next instruction
 - » a set of general-purpose processor registers and their values

How could we achieve this?

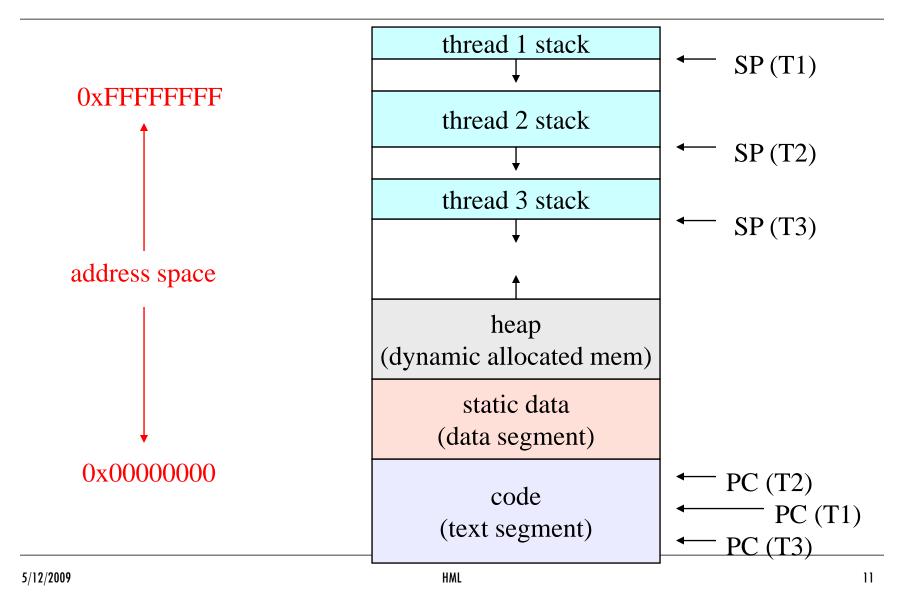
- Given the process abstraction as we know it:
 - » fork several processes
 - » cause each to map to the *same* address space to share data
- This is like making a pig fly it's really inefficient
 - » space: PCB, page tables, etc.
 - » time: creating OS structures, fork and copy addr space, etc.
- Some equally bad alternatives for some of the cases:
 - » Entirely separate web servers
 - » Asynchronous programming (explicit programming of non-blocking I/Os) in the web client (browser)

Can we do better?

- Key idea:
 - » separate the concept of a process (address space, etc.)
 - » from that of a minimal "thread of control" (execution state: PC, etc.)
- This execution state is usually called a thread, or sometimes, a lightweight process


Threads and processes

- Most modern OS's (Mach, Chorus, Win/XP, modern Unix) therefore support two entities:
 - » the process, which defines the address space and general process attributes (such as open files, etc.)
 - » the thread, which defines a sequential execution stream within a process
- A thread is bound to a single process
 - » processes, however, can have multiple threads executing within them
 - » sharing data between threads is cheap: all see same address space
- Threads become the unit of scheduling
 - » processes are just containers in which threads execute


The design space

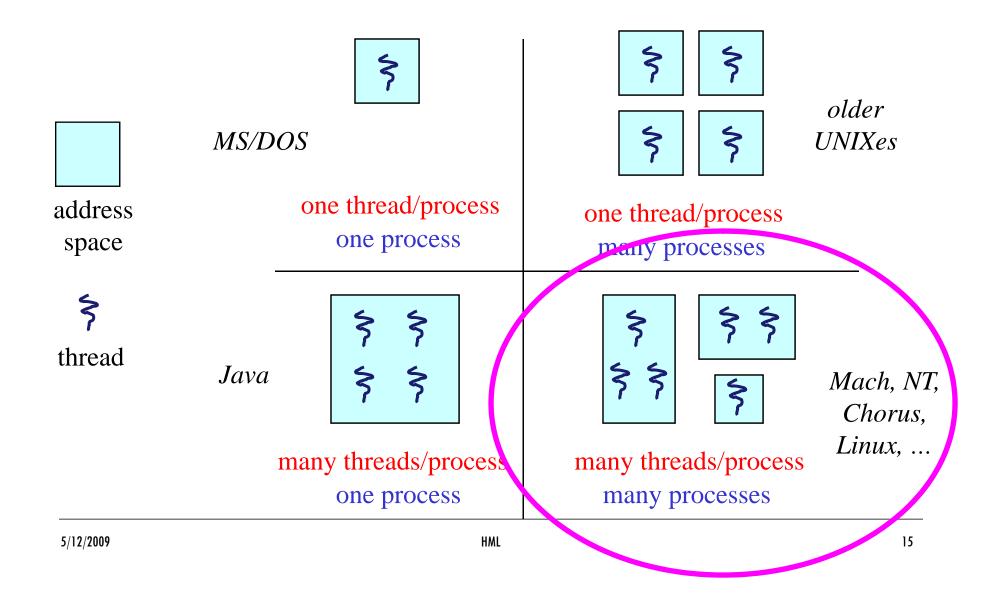
key	\$ MS/DOS	333Older33UNIXes
address space	one thread/process one process	one thread/process many processes
\$ thread	3 3 Java 3	3 3 3 3 3 3 Mach, NT, Chorus, Chorus,
	many threads/process one process	Many threads/processLinux,many processes

(old) Process address space

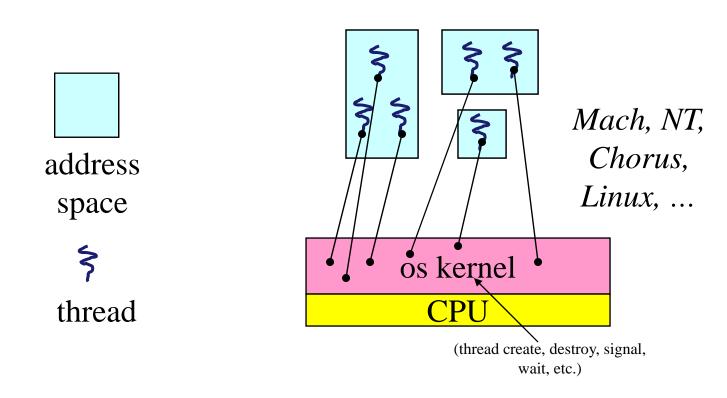
(new) Address space with threads

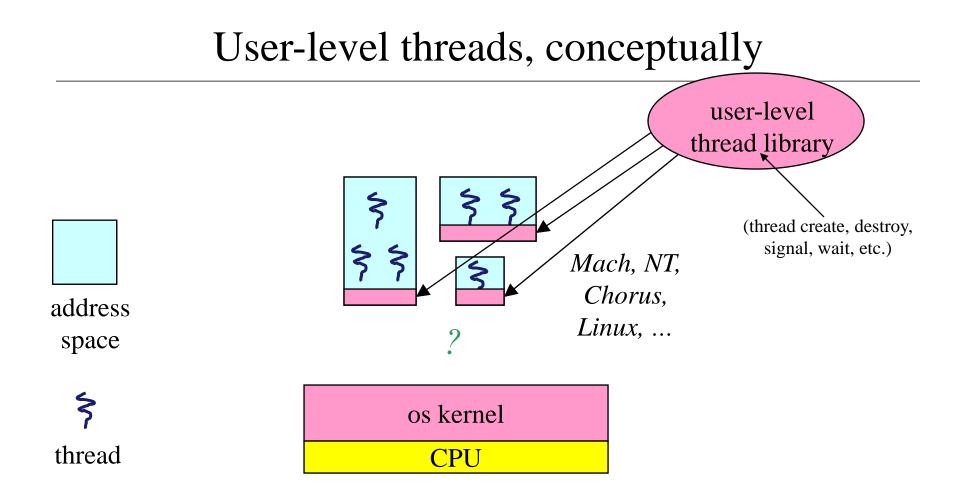
Process/thread separation

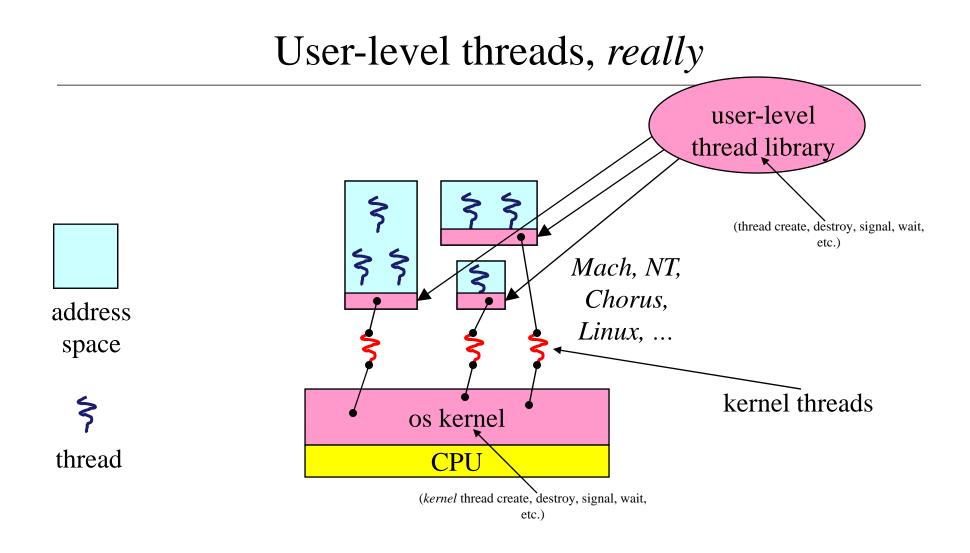
- Concurrency (multithreading) is useful for:
 - » handling concurrent events (e.g., web servers and clients)
 - » building parallel programs (e.g., matrix multiply, ray tracing)
 - » improving program structure (the Java argument)
- Multithreading is useful even on a uniprocessor
 - » even though only one thread can run at a time
- Supporting multithreading that is, separating the concept of a process (address space, files, etc.) from that of a minimal thread of control (execution state), is a big win
 - » creating concurrency does not require creating new processes
 - » "faster better cheaper"

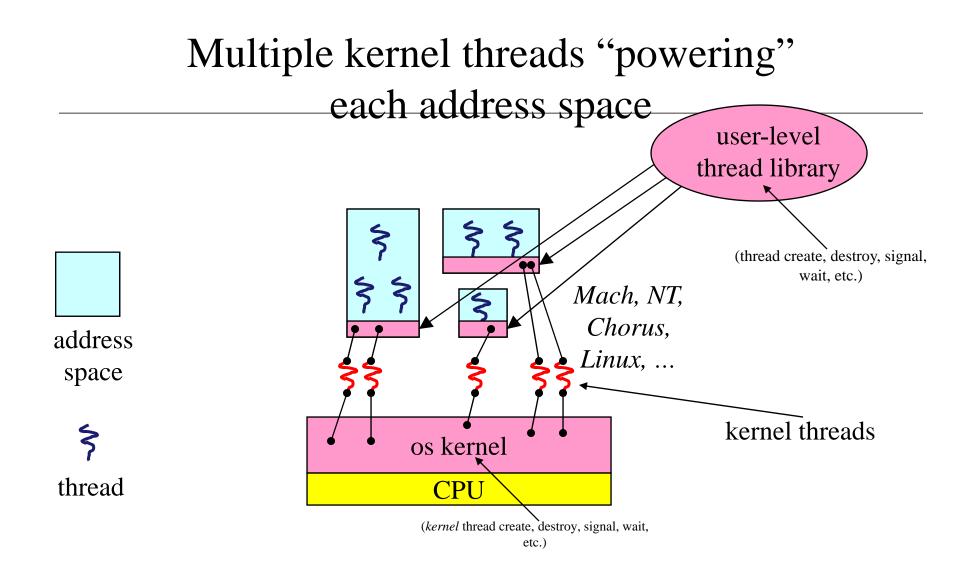

"Where do threads come from, Mommy?"

- Natural answer: the kernel is responsible for creating/managing threads
 - » for example, the kernel call to create a new thread would
 - allocate an execution stack within the process address space
 - create and initialize a Thread Control Block stack pointer, program counter, register values
 - stick it on the ready queue
 - » we call these kernel threads


User-Level Threads


- Threads can also be managed at the user level (that is, entirely from within the process)
 - » a library linked into the program manages the threads
 - because threads share the same address space, the thread manager doesn't need to manipulate address spaces (which only the kernel can do)
 - threads differ (roughly) only in hardware contexts (PC, SP, registers), which can be manipulated by user-level code
 - Thread package multiplexes user-level threads on top of kernel thread(s), which it treats as "virtual processors"
 - » we call these user-level threads


The design space



Kernel threads

Kernel threads

- OS now manages threads *and* processes
 - » all thread operations are implemented in the kernel
 - » OS schedules all of the threads in a system
 - if one thread in a process blocks (e.g., on I/O), the OS knows about it, and can run other threads from that process
 - possible to overlap I/O and computation inside a process
- Kernel threads are cheaper than processes
 » less state to allocate and initialize
- But, they're still pretty expensive for fine-grained use (e.g., orders of magnitude more expensive than a procedure call)
 - » thread operations are all system calls
 - context switch
 - argument checks
 - » must maintain kernel state for each thread

User-level threads

- To make threads cheap and fast, they need to be implemented at the user level
 - » managed entirely by user-level library, e.g. libpthreads.a
- User-level threads are small and fast
 - » each thread is represented simply by a PC, registers, a stack, and a small thread control block (TCB)
 - » creating a thread, switching between threads, and synchronizing threads are done via procedure calls
 - no kernel involvement is necessary!
 - » user-level thread operations can be 10-100x faster than kernel threads as a result

Performance example

- On a 700MHz Pentium running Linux 2.2.16:
 - » Processes
 - fork/exit: 251 µs
 - » Kernel threads
 - pthread_create()/pthread_join(): 94 μs
 - » User-level threads
 - pthread_create()/pthread_join: 4.5 μs

User-level thread implementation

- The kernel thread (the kernel-controlled executable entity associated with the address space) executes the code in the address space
- This code includes the thread support library and its associated thread scheduler
- The thread scheduler determines when a thread runs
 - » it uses queues to keep track of what threads are doing: run, ready, wait
 - just like the OS and processes
 - but, implemented at user-level as a library

How to keep a thread from hogging the CPU?

- Strategy 1: force everyone to cooperate
 - » a thread willingly gives up the CPU by calling yield()
 - » yield() calls into the scheduler, which context switches to another ready thread
 - » what happens if a thread never calls yield()?
- Strategy 2: use preemption
 - » User-level scheduler requests that a timer interrupt be delivered by the OS periodically
 - » at each timer interrupt, scheduler gains control and context switches as appropriate

Thread context switch

- Very simple for user-level threads:
 - » save context of currently running thread
 - push machine state onto thread stack
 - » restore context of the next thread
 - pop machine state from next thread's stack
 - » return as the new thread
 - execution resumes at PC of next thread
- This is all done by assembly language
 - » it works at the level of the procedure calling convention
 - thus, it cannot be implemented using procedure calls

What if a thread tries to do I/O?

- The kernel thread "powering" it is lost for the duration of the (synchronous) I/O operation!
- Could have one kernel thread "powering" each user-level thread
 - "common case" operations (e.g., synchronization)
 would be quick
- Could have a limited-size "pool" of kernel threads "powering" all the user-level threads in the address space
 - » the kernel will be scheduling its threads obliviously to what's going on at user-level

What if the kernel preempts a thread holding a lock?

- Other threads will be unable to enter the critical section and will block (stall)
 - » tradeoff, as with everything else
- Solving this requires coordination between the kernel and the user-level thread manager
 - » "scheduler activations"
 - a research paper from UW with huge effect on industry
 - each process can request one or more kernel threads process is given responsibility for mapping user-level threads onto kernel threads

kernel promises to notify user-level before it suspends or destroys a kernel thread

• ACM TOCS 10,1

Summary

- You really want multiple threads per address space
- Kernel threads are much more efficient than processes, but they're still not cheap
 - » all operations require a kernel call and parameter verification
- User-level threads are:
 - » fast as blazes
 - » great for common-case operations
 - creation, synchronization, destruction
 - » can suffer in uncommon cases due to kernel obliviousness
 - I/O
 - preemption of a lock-holder
- Scheduler activations are the answer
 - » pretty subtle though