
Intro to Operating Systems

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

5/5/2009 cse410-18-os © 2006-09 Perkins, Douglas Johnson and University of Washington 1

Readings and Referencesg

• Reading g
» Operating System Concepts, Silberschatz, Galvin,

and Gagne
• Ch. 1 Introduction & Ch. 2 OS Structures for

background
M t f l f S 1 1 1 4 1 9 2 1 2 3 2 4 2 6• Most useful for us: Sec. 1.1, 1.4-1.9, 2.1, 2.3-2.4, 2.6-
2.7

» Slide credits: largely taken from CSE451, courtesy
of Hank Levyof Hank Levy.

5/5/2009 cse410-18-os © 2006-09 Perkins, Douglas Johnson and University of Washington 2

What is an Operating System?p g y
• An operating system (OS) is:

» a software layer to abstract away and manage details of» a software layer to abstract away and manage details of
hardware resources

» a set of utilities to simplify application development

Applications

OS

» “all the code you didn’t write” in order to implement your

Hardware

» “all the code you didn’t write” in order to implement your
application

• Key idea: virtualization of resources

5/5/2009 HML 3

The OS and hardware
• An OS mediates programs’ access to hardware resources

» Computation (CPU)» Computation (CPU)
» Volatile storage (memory) and persistent storage (disk, etc.)
» Network communications (TCP/IP stacks, ethernet cards, etc.)

/ d i (k b d di l d d)» Input/output devices (keyboard, mouse, display, sound card, ..)

• The OS abstracts hardware into logical resources and well-
defined interfaces to those resources
» processes (CPU, memory)
» files (disk)

programs (seq ences of instr ctions)» programs (sequences of instructions)
» sockets (network)

5/5/2009 HML 4

Why bother with an OS?y
• Application benefits

» programming simplicity
• see high level abstractions (files) instead of low level• see high-level abstractions (files) instead of low-level

hardware details (device registers)
• abstractions are reusable across many programs

» portability (across machine configurations or
hit t)architectures)

• device independence: 3Com card or Intel card?
• User benefits

f t» safety
• program “sees” own virtual machine, thinks it owns computer
• OS protects programs from each other (what if one crashes?)
• OS fairly multiplexes resources across programsOS fairly multiplexes resources across programs

» efficiency (cost and speed)
• share one computer across many users
• concurrent execution of multiple programs

5/5/2009 HML 5

The major OS issuesj
• structure: how is the OS organized?

h i h h d ?• sharing: how are resources shared across users?
• naming: how are resources named (by users or programs)?
• security: how is integrity of the OS and its resources ensured?
• protection: how is one user/program protected from another?
• performance: how do we make it all go fast?
• reliability: what happens if something goes wrong (either with hardware orreliability: what happens if something goes wrong (either with hardware or

with a program)?
• extensibility: can we add new features?
• communication: how do programs exchange information including across• communication: how do programs exchange information, including across

a network?

5/5/2009 HML 6

More OS issues…

• concurrency: how are parallel activities (computation and I/O) created
d ll d?and controlled?

• scale and growth: what happens as demands or resources increase?
• persistence: how do you make data last longer than program

executions?
• distribution: how do multiple computers interact with each other?

how do we make distribution invisible?
• accounting: how do we keep track of resource usage, and perhaps

charge for it?

There are a huge number of engineering tradeoffs
in dealing with these issues!

5/5/2009 HML 7

Hardware/Software Changes with Timeg

• 1960s: mainframe computers (IBM)
• 1970s: minicomputers (DEC)
• 1980s: microprocessors and workstations (SUN)
• 1990s: PCs (rise of Microsoft, Intel, then Dell)
• 2000: Internet Services / Clusters (Amazon)
• 2006: General Cloud Computing (Google,

Amazon)
• …..
• 2020: it’s up to you!!

5/5/2009 HML 8

OS historyy
• In the very beginning…

» OS was just a library of code that you linked into your» OS was just a library of code that you linked into your
program; programs were loaded in their entirety into
memory, and executed

» interfaces were literally switches and blinking lightsy g g
• And then came batch systems

» OS was stored in a portion of primary memory
OS l d d th t j b i t f th d d» OS loaded the next job into memory from the card reader
• job gets executed
• output is printed, including a dump of memory (why?)
• repeat• repeat…

» card readers and line printers were very slow
• so CPU was idle much of the time (wastes $$)

5/5/2009 HML 9

Spoolingp g

• Disks were much faster than card readers and printers
• Spool (Simultaneous Peripheral Operations On-Line)

» while one job is executing, spool next job from card reader
onto diskonto disk
• slow card reader I/O is overlapped with CPU

» can even spool multiple programs onto disk
OS t h hi h t t• OS must choose which to run next

• job scheduling
» but, CPU still idle when a program interacts with a

peripheral during execution
» buffering, double-buffering

5/5/2009 HML 10

Multiprogrammingp g g

• To increase system utilization, multiprogramming OSs
i t dwere invented

» keeps multiple runnable jobs loaded in memory at once
» overlaps I/O of a job with computing of another» overlaps I/O of a job with computing of another

• while one job waits for I/O completion, OS runs instructions from
another job

» to benefit need asynchronous I/O devices» to benefit, need asynchronous I/O devices
• need some way to know when devices are done

interrupts
pollingpolling

» goal: optimize system throughput
• perhaps at the cost of response time…

5/5/2009 HML 11

Timesharingg
• To support interactive use, create a timesharing OS:

» multiple terminals into one machine
» each user has illusion of entire machine to him/herself
» optimize response time, perhaps at the cost of throughput

• Timeslicingg
» divide CPU equally among the users
» if job is truly interactive (e.g. editor), then can jump

between programs and users faster than users can generate
l dload

» permits users to interactively view, edit, debug running
programs (why does this matter?)

MIT M lti t (id 1960’) th fi t l• MIT Multics system (mid-1960’s) was the first large
timeshared system
» nearly all OS concepts can be traced back to Multics

5/5/2009 HML 12

Timesharingg
• In early 1980s, a single

timeshared VAX/780 (like the
one in the Allen Center atrium)
ran computing for the entire
CSE department.

• A typical VAX/780 was 1
MIPS (1 MHz) and had 16MB
of RAM and 100MB of disk.

• An iPhone is 400 MIPS, has ,
128MB of RAM (way too little
though) and 8GB of disk.

5/5/2009 HML 13

Parallel systemsy
• Some applications can be written as multiple parallel

threads or processes
» can speed up the execution by running multiple» can speed up the execution by running multiple

threads/processes simultaneously on multiple CPUs
[Burroughs D825, 1962]
• true multiprocesssing (not just multiprogramming)p g (j p g g)

» need OS and language primitives for dividing program into
multiple parallel activities

» need OS primitives for fast communication among activities
• degree of speedup dictated by communication/computation ratio

» many flavors of parallel computers today
• SMPs (symmetric multi-processors, multi-core)

SMT (i l l i h di [“h h di ”])• SMT (simultaneous multithreading [“hyperthreading”])
• MPPs (massively parallel processors)
• NOWs (networks of workstations) [clusters]
• computational grid (SETI @home)

5/5/2009 14

computational grid (SETI @home)

Personal computingp g
• Primary goal was to enable new kinds of interactive

applicationspp
• Bit-mapped display [Xerox Alto,1973]

– New graphic/visual apps
i t d i (th)– new input device (the mouse)

• Move computing near the display
– why?y

• Window systems
– the display as a managed resource

• Local area networks [Ethernet]
– why?

• Effect on OS?
5/5/2009 HML 15

• Effect on OS?

Embedded OS
• Pervasive computing

» cheap processors embedded everywherep p y
» how many are on your body now? in your car?
» cell phones, PDAs, games, iPod, network

computers, …
• Typically very constrained hardware resources• Typically very constrained hardware resources

» slow processors
» small amount of memory
» no disk or tiny disk
» typically only one dedicated application
» limited power

• But technology changes fast• But technology changes fast
» embedded CPUs are getting faster
» storage is growing rapidly

5/5/2009 HML 16

OS structure

• The OS sits between application programs and the hardware
» it mediates access and abstracts away ugliness
» programs request services via exceptions (traps or faults)
» devices request attention via interruptsq p

P P
P
1

P
2

P
3 P

4
exception

dispatch

OS
D D

exception
interrupt

start i/o

5/5/2009 HML 17
1 D

2
D
3

D
4

Major OS componentsj p
• processes
• memory
• I/O

d t• secondary storage
• file systems
• protection• protection
• accounting
• shells (command interpreter or OS UI)shells (command interpreter, or OS UI)
• GUI
• networking

5/5/2009 HML 18

networking

OS structure
• It’s not always clear how to stitch OS

d l hmodules together:
Command Interpreter

I f m ti S i s

File System
Accounting System

Information Services

Error Handling

Memory Secondary Storage

Protection System

Memory
Management

I/O System

Secondary Storage
ManagementProcess Management

5/5/2009 HML 19

OS structure
• An OS consists of all of these components, plus:

th t» many other components
» system programs (privileged and non-privileged)

• e.g., bootstrap code, the init program, …
• Major issue:

» how do we organize all this?
» what are all of the code modules, and where do they exist?» what are all of the code modules, and where do they exist?
» how do they cooperate?

• Massive software engineering and design problem
d i l l th t» design a large, complex program that:
• performs well, is reliable, is extensible, is backwards compatible,

…

5/5/2009 HML 20

Early structure: Monolithicy
• Traditionally, OS’s (like UNIX) were built

li hi ias a monolithic entity:

user programs

everythingOS

hardware

5/5/2009 HML 21

Monolithic designg

• Major advantage:
» cost of module interactions is low (procedure call)

• Disadvantages:
» hard to understand
» hard to modify

li bl (i l ti b t t d l)» unreliable (no isolation between system modules)
» hard to maintain

• What is the alternative?• What is the alternative?
» find a way to organize the OS in order to simplify its

design and implementation

5/5/2009 HML 22

g p

Layeringy g
• The traditional approach is layering

» implement OS as a set of layers
» each layer presents an enhanced ‘virtual machine’ to the layer above

• The first description of this approach was Dijkstra’s THE system
» Layer 5: Job Managers

• Execute users’ programs
» Layer 4: Device Managers

• Handle devices and provide buffering
» Layer 3: Console Manager» Layer 3: Console Manager

• Implements virtual consoles
» Layer 2: Page Manager

• Implements virtual memories for each process
» Layer 1: Kernel

• Implements a virtual processor for each process
» Layer 0: Hardware

• Each layer can be tested and verified independently

5/5/2009 HML 23

• Each layer can be tested and verified independently

Problems with layeringy g

• Imposes hierarchical structure
» but real systems are more complex:

• file system requires VM services (buffers)
• VM would like to use files for its backing store• VM would like to use files for its backing store

» strict layering isn’t flexible enough
• Poor performancePoor performance

» each layer crossing has overhead associated with it
• Disjunction between model and realityj y

» systems modeled as layers, but not really built that
way

5/5/2009 HML 24

Hardware Abstraction Layer

• An example of layering in p y g
modern operating systems

• Goal: separates hardware- Core OS
(filGoal: separates hardware

specific routines from the
“core” OS

(file system,
scheduler,

system calls)core OS
– Provides portability
– Improves readability

y)
Hardware Abstraction

Layer
(device drivers(device drivers,

assembly routines)

5/5/2009 HML 25

The Sanitized Picture of OS Structure

JavaPhotoshopFirefoxA
pp

s

Acrobat

Application Interface (API)

JavaPhotoshopFirefox

U
se

r A Acrobat

File
Systems

Memory
Manager

Process
Manager

Network
Support

g
Sy

st
em

Portable

Device
Drivers

Interrupt
Handlers

Boot &
Init

O
pe

ra
tin

g e

Hardware (CPU, devices)

Hardware Abstraction Layer

5/5/2009 HML 26

(,)

Lower-level architecture and the OS

• Operating system functionality is dictated, at least
in part, by the underlying hardware architecture
» includes instruction set (synchronization, I/O, …)

l h d t lik MMU DMA» also hardware components like MMU or DMA
controllers

• Architectural support can vastly simplify (orArchitectural support can vastly simplify (or
complicate!) OS tasks
» e.g.: early PC operating systems (DOS, MacOS)

lacked support for virtual memory, in part because at
that time PCs lacked necessary hardware support

5/5/2009 HML 27

Architectural features affecting OS’sg

• These features were built primarily to support
OS’s:
» timer (clock) operation

h i ti i t ti (t i t t d t)» synchronization instructions (e.g., atomic test-and-set)
» memory protection
» I/O control operations» I/O control operations
» interrupts and exceptions
» protected modes of execution (kernel vs. user)p ()
» protected instructions
» system calls (and software interrupts)

5/5/2009 HML 28

Protected instructions
• some instructions are restricted to the OS

k t t d i il d i t ti» known as protected or privileged instructions
• e.g., only the OS can:

» directly access I/O devices (disks, network cards)y (,)
• why?

» manipulate memory state management
• page table pointers, TLB loads, etc.p g p , ,
• why?

» manipulate special ‘mode bits’
• interrupt priority level, user/kernel mode bitp p y ,
• why?

» halt instruction
• why?

5/5/2009 HML 29

y

OS protectionp
• So how does the processor know if a protected

i t ti h ld b t d?instruction should be executed?
» the architecture must support at least two modes of

operation: kernel mode and user mode
» mode is set by status bit in a protected processor

register
• user programs execute in user modeuser programs execute in user mode
• OS executes in kernel mode (OS == kernel)

• Protected instructions can only be executed in the
kernel modekernel mode
» what happens if user mode executes a protected

instruction?

5/5/2009 HML 30

Crossing protection boundariesg p
• So how do user programs do something privileged?

» e g how can you write to a disk if you can’t do I/O» e.g., how can you write to a disk if you can t do I/O
instructions?

• User programs must call an OS procedure
» OS defines a sequence of system calls» OS defines a sequence of system calls
» how does the user-mode to kernel-mode transition happen?

• There must be a system call instruction, which:
i (h f i) hi h» causes an exception (throws a software interrupt), which vectors

to a kernel handler
» passes a parameter indicating which system call to invoke

ll ’ t t (d bit) th b t d» saves caller’s state (regs, mode bit) so they can be restored
» OS must verify caller’s parameters (e.g., pointers)
» must be a way to return to user mode once done

5/5/2009 HML 31

A kernel crossing illustratedg

Firefox: read()

 d

()
trap to kernel
mode; save

user mode

kernel mode

app state

restore apptrap handlerm

find read()
handler in

restore app
state, return to

user mode,

trap handler

handler in
vector table resume

read() kernel routine

5/5/2009 HML 32

()

System call issuesy

• What would happen if kernel didn’t save state?pp
• Why must the kernel verify arguments?
• How can you reference kernel objects as• How can you reference kernel objects as

arguments or results to/from system calls?

5/5/2009 HML 33

OS control flow

• after the OS has booted, all entry to the kernel happens
th lt f tas the result of an event

» event immediately stops current execution
» changes mode to kernel mode, event handler is called» changes mode to kernel mode, event handler is called

• kernel defines handlers for each event type
» specific types are defined by the architecture

• e.g.: timer event, I/O interrupt, system call trap
» when the processor receives an event of a given type, it

• transfers control to handler within the OStransfers control to handler within the OS
• handler saves program state (PC, regs, etc.)
• handler functionality is invoked
• handler restores program state returns to program

5/5/2009 HML 34

handler restores program state, returns to program

Interrupts and exceptionsp p

• Two main types of events: interrupts and
exceptions
» exceptions are caused by software executing

instructions
• e.g., the x86 ‘int’ instruction, MIPS ‘syscall’ instruction
• e g a page fault write to a read only page divide by 0• e.g., a page fault, write to a read-only page, divide by 0
• an expected exception is a “trap”, unexpected is a “fault”

» interrupts are caused by hardware devicesp y
• e.g., device finishes I/O
• e.g., timer fires

5/5/2009 HML 35

I/O control
• Issues:

» how does the kernel start an I/O?» how does the kernel start an I/O?
• special I/O instructions
• memory-mapped I/O

» how does the kernel notice an I/O has finished?
• polling
• interrupts

• Interrupts are basis for asynchronous I/O
» device performs an operation asynch to CPU
» device sends an interrupt signal on bus when done
» in memory, a vector table contains list of addresses of

k l i h dl i i
y

kernel routines to handle various interrupt types
» CPU switches to address indicated by vector specified by

interrupt signal

5/5/2009 HML 36

Timers

• How can the OS prevent runaway user programs from
h i th CPU (i fi it l ?)hogging the CPU (infinite loops?)
» use a hardware timer that generates a periodic interrupt
» before it transfers to a user program, the OS loads the timer» before it transfers to a user program, the OS loads the timer

with a time to interrupt
• “quantum”: how big should it be set?

» when timer fires an interrupt transfers control back to OS» when timer fires, an interrupt transfers control back to OS
• at which point OS must decide which program to schedule next
• very interesting policy question: we’ll dedicate a class to it

• Should the timer be privileged?
» for reading or for writing?

5/5/2009 HML 37

Synchronizationy
• Interrupts cause a wrinkle:

» may occur any time causing code to execute that interferes with code» may occur any time, causing code to execute that interferes with code
that was interrupted

» OS must be able to synchronize concurrent processes
• Synchronization:Synchronization:

» guarantee that short instruction sequences (e.g., read-modify-write)
execute atomically

» one method: turn off interrupts before the sequence, execute it, then re-» one method: turn off interrupts before the sequence, execute it, then re
enable interrupts
• architecture must support disabling interrupts

» another method: have special complex atomic instructionsp p
• read-modify-write
• test-and-set
• load-linked store-conditional

5/5/2009 HML 38

“Concurrent programming”p g g

• Management of concurrency and asynchronous events
i bi t diff b t “ t i ”is biggest difference between “systems programming”
and “traditional application programming”
» modern “event-oriented” application programming is a ode eve o e ed app ca o p og a g s a

middle ground
• Arises from the architecture
• Can be sugar-coated, but cannot be totally abstracted

away
• Huge intellectual challenge• Huge intellectual challenge

» Unlike vulnerabilities due to buffer overruns, which are
just sloppy programming

5/5/2009 HML 39

Architectures are still evolvingg
• New features are still being introduced to meet modern demands, e.g.:

» Support for virtual machine monitors
» Hardware transaction support (to simplify parallel programming)
» Support for security (encryption, trusted modes)
» Increasingly sophisticated video / graphics

Oth t ff th t h ’t b i t d t» Other stuff that hasn’t been invented yet…

• In current technology transistors are free – CPU makers are looking for
new ways to use transistors to make their chips more desirablenew ways to use transistors to make their chips more desirable.

• Intel’s big challenge: finding applications that require new hardware
support so that you will want to upgrade to a new computer to run themsupport, so that you will want to upgrade to a new computer to run them.

5/5/2009 HML 40

