
Virtual Memory

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

5/26/2009 cse410-14-virtual-memory © 2006-09, Perkins, DW Johnson and University of Washington 1

Reading and Referencesg

• Reading
• Computer Organization and Design, Patterson and Hennessy

» Section 5.4 Virtual Memory
» Section 5.5 A Common Framework for Memory Hierarchies

5/26/2009 cse410-14-virtual-memory © 2006-09, Perkins, DW Johnson and University of Washington 2

Memory Management Goalsy g

We want to share main memory such that:y
• Each process thinks it has a private memory of

2-4 GB (or more), even if it doesn’t use it all2 4 GB (or more), even if it doesn t use it all
• Real memory is allocated efficiently to parts of

process memory actually being used (locality)process memory actually being used (locality)
• No process can interfere with or even see

b l i t thmemory belonging to another
» Unless we want that to happen

5/26/2009 cse410-14-virtual-memory © 2006-09, Perkins, DW Johnson and University of Washington 3

Layout of program memoryy p g y

7FFF EFFF stack (grows down)

reserved (4KB)7FFF FFFF

stack (grows down)

~1792 MB

1000 FFFF

Not to
Scale!heap (grows up)1001 0000

0FFF FFFF
1000 0000
1000 FFFF

program (252 MB)

global data (64 KB)

reserved (4 MB)
0000 0000

003F FFFF

0040 0000

5/26/2009 cse410-14-virtual-memory © 2006-09, Perkins, DW Johnson and University of Washington 4

The Big Ideag

• Separate program notion of memory addresses p p g y
from actual physical memory locations
» Program memory = virtual addressesg y
» Physical memory = real addresses
» Use hardware to map between the two» Use hardware to map between the two

5/26/2009 cse410-14-virtual-memory © 2006-09, Perkins, DW Johnson and University of Washington 5

Memory Mappingy pp g

program
dd

physical
dd

memory
i

heap

stack
addresses addressesmapping

program
physical

memory
stack

heap
program

stack

heap
program

stack

disk

5/26/2009 cse410-14-virtual-memory © 2006-09, Perkins, DW Johnson and University of Washington 6

Virtual Physical Paging
0
1

0
1

Virtual
Page #

Physical
Page #

0x0000 0x0000

• Divide a process's virtual
address space into fixed-
size chunks (called pages)

1
2
3
4

1
2
3
4size chunks (called pages)

• Divide physical memory
into pages of the same size
A i t l b

4
5

4
5
6
7

0x6000

0 0000• Any virtual page can be
located at any physical
page

0
1
2

7
8
9
10

0x0000

• Translation box converts
from virtual pages to
physical pages

3
10
11
12
13Translation

0x4000

0 00013 0xE000

Multiple Processes Vi t l Ph i l Multiple Processes
Share Memory

0
1

0
1

Virtual
Page #

Physical
Page #

0x0000 0x0000

• Each process thinks it
t t t dd

1
2
3
4

1
2
3
4starts at address

0x0000 and has all of
memory

4
5

4
5
6
7

0x6000

memory
• A process doesn't

know anything about

0
1
2

7
8
9
10

0x0000

know anything about
physical addresses
and doesn't care

3
10
11
12
13Translation

0x4000

and doesn t care 13 0xE000

Protection

• A process can only use its 0 0

Virtual
Page #

Physical
Page #

0x0000 0x0000p y
own virtual addresses

• A process can't corrupt

1
2
3

1
2
3

another process's memory
» It has no address to refer to it

4
5

4
5
6

0x6000

• How can Blue write to
Green's page 2?

d dd f

0
1
2

7
8
9

0x0000

» needs an address to refer to
physical page 7, but it doesn't
have one

2
3

10
11
12

Translation

0x4000

13Translation
0xE000

Sparse Address
Spaces

0

Virtual
Page #

Physical
Page #

0x0000 0x00000
• Memory addresses that

aren't being used at all
don't have to be

0
1
2
3

0x0000 0x00000
1
2
3don't have to be

assigned real addresses
» Code can start at a very

3
4
5
6

30x4000

Unusedy
low logical address

» Stack can start at a very
high logical address

6
7
8
9 0xA000

997
998

0x0FFC000

high logical address
» No physical pages

allocated for unused
addresses in bet een

9

Translation
0x1000000

0xA000999
1000

addresses in between

Sh i M Virtual Physical Sharing Memory
• Two processes can share 0

1

Virtual
Page #

Physical
Page #

0x0000 0x00000
1

memory by mapping two
virtual pages to the same
physical page

1
2
3
4

1
2
3
4physical page

• The code for Word can be
shared for two Word

4
5

Word
0x6000

00x0000

4
5
6
7

processes
» code pages are read only

h h i

0
1
2
3

0x0000 7
8
9
10• Each process has its own

data pages
» possible to share data pages Translation

0 000

3
4
5

W d
0x6000

10
11
12
13» possible to share data pages

too, but less common
0xE000Word 13

Store Memory on DiskStore Memory on Disk

• Memory that isn't being 0

Virtual
Page #

Physical
Page #

0x0000 0x00000
used can be saved on disk
» swapped back in when it is

referenced via page fault

0
1
2
3

0
1
2
3referenced via page fault

• Programs can address
more memory than is

4
5
6

4
5
6

physically available
• This is one important

f i t l

7
8
9 0xA000

7
8
9reason for virtual memory

» too hard for programs to do
this on their own

10
11
12

Translation0xE000 Disk13

Memory Hierarchy Revisitedy y

• Once the translation hardware is there we have a
caching problem again
» Want size ≈ disk, performance ≈ memory

K i di k l i 100 000 i• Key issue: disk latency is 100,000 times memory,
so design motivation is to avoid accessing disk

• Minimizing miss rate (“page faults”):• Minimizing miss rate (“page faults”):
» VM “pages” are much larger than cache blocks = size

of disk blocks, usually 4K or 8K or more, y
» Use fully associative lookup with approximate LRU
» Question: should it be write-back or write-through?

5/26/2009 cse410-14-virtual-memory © 2006-09, Perkins, DW Johnson and University of Washington 13

Finding the Right Page (frame)g g g ()
• If fully associative, how do we find the right page

ith t i ll f ?without scanning all of memory?
• Answer: index is called the page table

» Each process has a separate page table» Each process has a separate page table
• Processor “page table register” points to active one – part of

process state
» Page table indexed with virtual page number (VPN)» Page table indexed with virtual page number (VPN)

• The bits that aren’t part of the page offset
» Each entry contains a valid bit and a physical page

b (PPN)number (PPN)
• PPN is concatenated with page offset to get physical address

» No index tag needed – full VPN is index

5/26/2009 cse410-14-virtual-memory © 2006-09, Perkins, DW Johnson and University of Washington 14

Page Table pictureg p
Virtual address

Page table register

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Page offsetVirtual page number

Physical page numberValid

20 12

Page tableg

18

Page offsetPhysical page number

If 0 then page is not�
present in memory

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

15

Physical address

How big is the page table?g p g

• From the previous slide:p
» Virtual page number is 20 bits.
» Physical page number is 18 bits + valid bit -> y p g

round up to 32 bits.
• Or 20 bits + valid bit if 32-bit physical addressing

16

Dealing with large page tablesg g p g
• Multi-level page tables

» “Any problem in CS can be solved by adding a level of indirection”
or two…

Page Table
Base Pointer

1st

2nd

3rd

A 3-level page table

VPN1 VPN2 VPN3 ff t

PPN

PPN offset

• Since most processes don’t use the whole address space, you don’t allocate
the tables that aren’t needed

VPN1 VPN2 VPN3 offset

17

» Also, the 2nd and 3rd level page tables can be “paged” to disk.

Waitaminute!
• We’ve just replaced every memory access MEM[addr] with:

MEM[MEM[MEM[MEM[PTBR VPN1 2] VPN2 2] VPN3 2] ff]MEM[MEM[MEM[MEM[PTBR + VPN1<<2] + VPN2<<2] + VPN3<<2] + offset]

» i.e., 4 memory accesses

A d h ’t t lk d b t th b d t (i f lt)• And we haven’t talked about the bad case yet (i.e., page faults)…

“A bl i CS b l d b ddi l l f i di i ”“Any problem in CS can be solved by adding a level of indirection”
» except too many levels of indirection…

H d d l ith t l l f i di ti ?• How do we deal with too many levels of indirection?

18

Caching Translationsg
• Virtual to Physical translations are cached in a Translation Lookaside

Buffer (TLB).
Page offsetVirtual page number

Virtual address

1220

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

Physical page numberValid Dirty Tag

TLB hit

TLB

Page offset

20

Cache index Byte�

Physical page number

Physical address tag

�

�

Physical address

Valid Tag Data

16 14

Cache index

2
offsetPhysical address tag

32

Cache

19

DataCache hit

What about a TLB miss?

• If we miss in the TLB, we need to “walk the page
t bl ”table”
» In MIPS, an exception is raised and software fills the TLB
» In x86, a “hardware page table walker” fills the TLB» In x86, a hardware page table walker fills the TLB

• What if the page is not in memory?
» This situation is called a page fault.
» The operating system will have to read the page from disk.
» It will need to select a page to replace» It will need to select a page to replace.

• The O/S tries to approximate LRU (coming next)
» The replaced page will need to be written back if dirty.

20

Summaryy
• Virtual memory is great:

» It means that we don’t have to manage our own memory» It means that we don t have to manage our own memory.
» It allows different programs to use the same physical memory.
» It provides protect between different processes.

It ll t ll d h i b t (lb it h t» It allows controlled sharing between processes (albeit somewhat
inflexibly).

• The key technique is indirection:
Y t th l i CS t i k ’ i thi l» Yet another classic CS trick you’ve seen in this class.

» Many problems can be solved with indirection.
• Caching made a few appearances, too:

» Virtual memory enables using physical memory as a cache for
disk.

» We used caching (in the form of the Translation Lookaside
Buffer) to make Virtual Memory’s indirection fast

21

Buffer) to make Virtual Memory s indirection fast.

