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Reading and Referencesg

• Reading 
• Computer Organization and Design, Patterson and Hennessy

» Section 5.4 Virtual Memory
» Section 5.5 A Common Framework for Memory Hierarchies
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Memory Management Goalsy g

We want to share main memory such that:y
• Each process thinks it has a private memory of 

2-4 GB (or more), even if it doesn’t use it all2 4 GB (or more), even if it doesn t use it all
• Real memory is allocated efficiently to parts of 

process memory actually being used (locality)process memory actually being used (locality)
• No process can interfere with or even see 

b l i t thmemory belonging to another
» Unless we want that to happen
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Layout of program memoryy p g y

7FFF EFFF stack (grows down)

reserved (4KB)7FFF FFFF

stack (grows down)

~1792 MB

1000 FFFF

Not to
Scale!heap (grows up)1001 0000

0FFF FFFF
1000 0000
1000 FFFF

program (252 MB)

global data (64 KB)

reserved (4 MB)
0000 0000

003F FFFF

0040 0000
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The Big Ideag

• Separate program notion of memory addresses p p g y
from actual physical memory locations
» Program memory = virtual addressesg y
» Physical memory = real addresses
» Use hardware to map between the two» Use hardware to map between the two
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Memory Mappingy pp g
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disk
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Virtual Physical Paging
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Multiple Processes Vi t l Ph i l Multiple Processes
Share Memory
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Protection

• A process can only use its 0 0
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Sparse Address
Spaces
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Sh i M Virtual Physical Sharing Memory
• Two processes can share 0
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Store Memory on DiskStore Memory on Disk

• Memory that isn't being 0
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Memory Hierarchy Revisitedy y

• Once the translation hardware is there we have a 
caching problem again
» Want size ≈ disk, performance ≈ memory

K i di k l i 100 000 i• Key issue: disk latency is 100,000 times memory, 
so design motivation is to avoid accessing disk

• Minimizing miss rate (“page faults”):• Minimizing miss rate (“page faults”):
» VM “pages” are much larger than cache blocks = size 

of disk blocks, usually 4K or 8K or more, y
» Use fully associative lookup with approximate LRU
» Question: should it be write-back or write-through?
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Finding the Right Page (frame)g g g ( )
• If fully associative, how do we find the right page 

ith t i ll f ?without scanning all of memory?
• Answer: index is called the page table 

» Each process has a separate page table» Each process has a separate page table
• Processor “page table register” points to active one – part of 

process state
» Page table indexed with virtual page number (VPN)» Page table indexed with virtual page number (VPN)

• The bits that aren’t part of the page offset
» Each entry contains a valid bit and a physical page 

b (PPN)number (PPN)
• PPN is concatenated with page offset to get physical address

» No index tag needed – full VPN is index
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Page Table pictureg p
Virtual address

Page table register

31  30  29  28  27  15  14  13  12  11  10  9  8 3  2  1  0

Page offsetVirtual page number

Physical page numberValid

20 12

Page tableg

18

Page offsetPhysical page number

If 0 then page is not�
present in memory

29  28  27 15  14  13  12  11  10  9  8 3  2  1  0

15

Physical address



How big is the page table?g p g

• From the previous slide:p
» Virtual page number is 20 bits.
» Physical page number is 18 bits + valid bit -> y p g

round up to 32 bits.
• Or 20 bits + valid bit if 32-bit physical addressing
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Dealing with large page tablesg g p g
• Multi-level page tables

» “Any problem in CS can be solved by adding a level of indirection”
or two…

Page Table 
Base Pointer

1st

2nd

3rd

A 3-level page table

VPN1 VPN2 VPN3 ff t

PPN

PPN offset

• Since most processes don’t use the whole address space, you don’t allocate 
the tables that aren’t needed

VPN1 VPN2 VPN3 offset
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» Also, the 2nd and 3rd level page tables can be “paged” to disk.



Waitaminute!
• We’ve just replaced every memory access MEM[addr] with:

MEM[MEM[MEM[MEM[PTBR VPN1 2] VPN2 2] VPN3 2] ff ]MEM[MEM[MEM[MEM[PTBR + VPN1<<2] + VPN2<<2] + VPN3<<2] + offset]

» i.e., 4 memory accesses

A d h ’t t lk d b t th b d t (i f lt )• And we haven’t talked about the bad case yet (i.e., page faults)…

“A bl i CS b l d b ddi l l f i di i ”“Any problem in CS can be solved by adding a level of indirection”
» except too many levels of indirection…

H d d l ith t l l f i di ti ?• How do we deal with too many levels of indirection?
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Caching Translationsg
• Virtual to Physical translations are cached in a Translation Lookaside

Buffer (TLB).
Page offsetVirtual page number

Virtual address

1220

31 30 29  15 14 13 12 11 10 9 8  3 2 1 0 

Physical page numberValid Dirty Tag

TLB hit

TLB

Page offset

20

Cache index Byte�

Physical page number

Physical address tag

�

�

Physical address

Valid Tag Data

16 14

Cache index

2
offsetPhysical address tag

32

Cache
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DataCache hit



What about a TLB miss?

• If we miss in the TLB, we need to “walk the page 
t bl ”table”
» In MIPS, an exception is raised and software fills the TLB
» In x86, a “hardware page table walker” fills the TLB» In x86, a hardware page table walker  fills the TLB

• What if the page is not in memory?
» This situation is called a page fault.
» The operating system will have to read the page from disk.
» It will need to select a page to replace» It will need to select a page to replace.

• The O/S tries to approximate LRU (coming next)
» The replaced page will need to be written back if dirty.
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Summaryy
• Virtual memory is great:

» It means that we don’t have to manage our own memory» It means that we don t have to manage our own memory.
» It allows different programs to use the same physical memory.
» It provides protect between different processes.

It ll t ll d h i b t ( lb it h t» It allows controlled sharing between processes (albeit somewhat 
inflexibly).

• The key technique is indirection:
Y t th l i CS t i k ’ i thi l» Yet another classic CS trick you’ve seen in this class.

» Many problems can be solved with indirection.
• Caching made a few appearances, too:

» Virtual memory enables using physical memory as a cache for 
disk.

» We used caching (in the form of the Translation Lookaside
Buffer) to make Virtual Memory’s indirection fast
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Buffer) to make Virtual Memory s indirection fast.


