
Memory Hierarchies &
Cache MemoryCache Memory

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 1

Reading and Referencesg

• Readingg
» Computer Organization and Design, Patterson and

Hennessy
• Section 5.1 Introduction
• Section 5.2 The Basics of Caches
• Section 5.3 Measuring and Improving Cache

Performance

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 2

Large and Fastg

• We’d like our computers to have memory p y
systems that are:
» Large – big enough to hold large data sets, media g g g g ,

files (audio/image/video), databases, etc.
» Fast – in particular, fast enough so the processor

doesn’t have to wait around for data
• (i.e., single-cycle access times)

» Cheap – of course!!

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 3

Small or Slow
• Unfortunately there is a tradeoff between speed, cost, and

capacity

Storage Speed Cost Capacity

Static RAM Fastest Expensive Smallest

Dynamic RAM Slow Cheap Large

Hard disks Slowest Cheapest Largest

• Fast memory is too expensive to buy a lot (for most people)
• But DRAM is too slow compared to the processor – can’t p p

have every lw or sw access DRAM (long cycle times or lots
of stalls)

• And there’s no way we can fetch instructions from disk!y

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 4

Some rough estimatesg

• As of about 2008
Storage Delay Cost/MB Capacity

Static RAM 1-10 cycles ~$2-$5 128K-2MB
Dynamic RAM 100-200 cycles ~$0.02-0.08 128MB-8GB
Hard Disks 10,000,000+ cycles $0.0002-$0.002 20GB-1000GB

• Exact numbers have changed over time, but
the ratios have stayed surprisingly similar

• Flash memory is appearing in the niche between DRAM and disks, but is
not a major player in desktop systems – yet.

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 5

A Solution: Memory Hierarchyy y

• Keep copies of the active• Keep copies of the active
data in the small, fast,
expensive storage

fast, small,
expensive

expensive storage
• Keep all data in the big,

l h

storage

slow, cheap storage
• Move frequently used data slow, large,

cheap storage
to fast memory –
automatically

cheap storage

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 6

What is a Cache?
• A cache allows for fast accesses to a subset of a larger

ddata store
• Very general idea – Example: your web browser’s cache

i f t t i it d tlgives you fast access to pages you visited recently
» faster because it’s stored locally
» subset because the web won’t fit on your disk» subset because the web won t fit on your disk

• The memory cache gives the processor fast access to
memory that it used recentlymemory that it used recently
» faster because it’s expensive; usually located on the CPU chip
» subset because the cache is smaller than main memory

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 7

y

Memory Hierarchyy y

R i

CPU

Registers

L1 hL1 cache

L2 Cache

Main Memory

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 8

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 9

Localityy

• It’s usually difficult or impossible to figure out y p g
a program’s memory access patterns without
running itg

• If programs accessed memory randomly it
would be hard to automatically identify whatwould be hard to automatically identify what
data and instructions are “hot” and move them
to faster cache memoryto faster cache memory

• Fortunately most programs exhibit locality,
which the cache can take advantage ofwhich the cache can take advantage of

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 10

Principle of Localityp y
• Temporal locality - nearness in time

» Data being accessed now will probably be accessed» Data being accessed now will probably be accessed
again soon

» Useful data tends to continue to be useful
S i l l li i dd• Spatial locality - nearness in address
» Data near the data being accessed now will probably be

needed soon
» Useful data is often accessed sequentially

• Applies to both instructions and data
• Remember –this is observed behavior that we can

take advantage of, not something that is necessarily
consciously designed (although it can be)

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 11

consciously designed (although it can be)

Memory Access Patternsy

• Memory accesses
d ’t ll l k

• Memory accesses do
ll l k lik thidon’t usually look

like this
» random accesses

usually look like this
– hot variables

step through arrays
4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 12

» random accesses – step through arrays

Temporal locality in programs
• The principle of temporal locality says that if a program accesses one

memory address, there is a good chance that it will access the same address

p y p g

y , g
again.

• Loops are excellent examples of temporal locality in programs.
» The loop body will be executed many times.
» The computer will need to access those same few locations of the instruction» The computer will need to access those same few locations of the instruction

memory repeatedly.
• For example:

Loop: lw $t0 0($s1)Loop: lw $t0, 0($s1)
add $t0, $t0, $s2
sw $t0, 0($s1)
addi $s1, $s1, -4
bne $s1 $0 Loop

» Each instruction will be fetched over and over again, once on every loop
iteration.

bne $s1, $0, Loop

13

e o .

Temporal locality in data
• Programs often access the same variables over and over,

especially within loops Below sum and i are repeatedly

p y

especially within loops. Below, sum and i are repeatedly
read and written.

sum 0;sum = 0;
for (i = 0; i < MAX; i++)

sum = sum + f(i);

• Commonly-accessed variables can sometimes be kept in
registers, but this is not always possible.g , y p
» There are a limited number of registers.
» There are situations where the data must be kept in memory, as is

the case with shared or dynamically-allocated memory.

14

y y y

Spatial locality in programs
• The principle of spatial locality says that if a program accesses one

memory address, there is a good chance that it will also access other

p y p g

memory address, there is a good chance that it will also access other
nearby addresses.

sub $sp, $sp, 16
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $a0, 8($sp)
sw $a1, 12($sp)

• Nearly every program exhibits spatial locality, because instructions
are usually executed in sequence—if we execute an instruction at y q
memory location i, then we will probably also execute the next
instruction, at memory location i+1.

• Code fragments such as loops exhibit both temporal and spatial
locality

15

locality.

Spatial locality in data
• Programs often access

data that is stored
contiguously

p y
sum = 0;
for (i = 0; i < MAX; i++)

sum = sum + a[i];contiguously.
» Arrays, like a in the

code on the top, are
stored in memory employee name = “Homer Simpson”;

[];

stored in memory
contiguously.

» The individual fields of
a record or object like

employee.name = Homer Simpson ;
employee.boss = “Mr. Burns”;
employee.age = 45;

a record or object like
employee are also kept
contiguously in
memory.memory.

• Can data have both
spatial and temporal
locality?

16

locality?

How caches take advantage of temporal localityg p y
• The first time the processor reads from

an address in main memory, a copy of
h d i l d i h h

CPU

that data is also stored in the cache.
» The next time that same address is read, we

can use the copy of the data in the cache
d f i h l d iinstead of accessing the slower dynamic

memory.
» So the first read is a little slower than

b f i it th h b th i

A little static
RAM (cache)

before since it goes through both main
memory and the cache, but subsequent
reads are much faster.

Thi t k d t f t l
Lots of

dynamic RAM
• This takes advantage of temporal

locality—commonly accessed data is
stored in the faster cache memory.

17

How caches take advantage of spatial localityg p y
• When the CPU reads location i from main

memory, a copy of that data is placed in the
cache. CPU

• But instead of just copying the contents of
location i, we can copy several values into the
cache at once, such as the four bytes from
l ti i th h i + 3locations i through i + 3.
» If the CPU later does need to read from locations i

+ 1, i + 2 or i + 3, it can access that data from the
cache and not the slower main memory.

A little static
RAM (cache)

y
» For example, instead of reading just one array

element at a time, the cache might actually be
loading four array elements at once.

• Again the initial load incurs a performance
Lots of

dynamic RAM• Again, the initial load incurs a performance
penalty, but we’re gambling on spatial locality
and the chance that the CPU will need the extra
data.

dynamic RAM

18

Definitions: Hits and misses
• A cache hit occurs if the cache contains the data that we’re

looking for Hits are good because the cache can return thelooking for. Hits are good, because the cache can return the
data much faster than main memory.

• A cache miss occurs if the cache does not contain the
requested data This is bad since the CPU must then waitrequested data. This is bad, since the CPU must then wait
for the slower main memory.

• There are two basic measurements of cache performance.
Th hit t i th t f th t» The hit rate is the percentage of memory accesses that are
handled by the cache.

» The miss rate (1 - hit rate) is the percentage of accesses that must
be handled by the slower main RAM.be handled by the slower main RAM.

• Typical caches have a hit rate of 95% or higher, so in fact
most memory accesses will be handled by the cache and will
be dramatically faster.

19

be dramatically faster.

Effective Access Time

cache
miss rate

cache
hit rate

teffective = (h)tcache + (1-h)tmemory

effective
access time

memory access
time

cache
access time

aka, Average Memory Access Time (AMAT)
4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 20

Cache Contents

• When do we put something in the cache?
» when it is used for the first time

• or when we access something nearby

• When do we overwrite something in the cache?
» when we need the space in the cache for some other p

entry
» all of memory won’t fit on the CPU chip so not

every location in memory can be cached

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 21

A small two-level hierarchyy

8-word cache8-word cache

0
0
0

1
0
0

0
0
0

0
1
0
0

1
0
0
0

1
1
0
0

1
0
0

0
0
0

1
0
0

=

0
0
0
0
0

=

0
0
0
0
1

=

0
0
0
1
0

6

=

1
1
1
0

0

=

1
1
1
1

4

=

1
1
1
1

=

0
0
0
1
1

=

0
0
1
0
0

=

0
0
1
0
1

0

4

8

1
1
6

1
2
0

1
2
4

1
2

1
6

2
0

32-word memory (128 bytes)

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 22

y

Fully Associative Cachey

0x00000001Y0010100

ValueValidAddress• In a fully associative
cache,

0x00012D10Y0101100

0x00000410Y0100100

0x09D91D11N0000100» any memory word can
be placed in any cache
line 0x00012D10Y0101100

0x00000005N0001100

0x0349A291Y1101100

» each cache line stores an
address and a data value

0x000123A8Y0100000

0x00000200N1111100

» accesses are slow (but
not as slow as you might
think)

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 23

think)

Direct Mapped Cachespp
• Fully associative caches are often too slow
• With direct mapped caches the address of the item• With direct mapped caches the address of the item

determines where in the cache to store it
» In our example, the lowest order two bits are the byte» In our example, the lowest order two bits are the byte

offset within the word stored in the cache
» The next three bits of the address are an index that

di t t th l ti f th t ithi th hdictates the location of the entry within the cache
» The remaining higher order bits record the rest of the

original address as a tag for this entryg g y
• The tag bits indicate the actual memory location of the word

in a particular cache line

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 24

Address Tagsg

• A tag is a label for a cache entry indicating where it
fcame from

» The upper bits of the data item’s address
• The index indicates where the entry goes in the cache• The index indicates where the entry goes in the cache

7 bit Address

1011101

Byte Offset (2)Index (3)Tag (2)

0111110

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 25

Direct Mapped Cachepp

C hM
Cache Contents

0x00000001Y11
ValueValidTag

0002 = 0

Cache
Index

1000100
1100000

Memory
Address

0x00012D10Y00
0x00000410Y01
0x09D91D11N10

0112 = 3
0102 = 2
0012 = 1

0001100
0101000

1000100

0x00000005N10
0x0349A291Y11
0x000123A8Y00

1002 = 4
1012 = 5
1102 = 6

1010000

1110100
0011000 0x000123A8Y00

0x00000200N10
1102 6
1112 = 7

0011000
1011100

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 26

N-way Set Associative Cachesy
• Direct mapped caches cannot store more than one

dd i h h i daddress with the same index
• If two addresses collide, then you overwrite the

ld tolder entry
• 2-way associative caches can store two different

addresses with the same indexaddresses with the same index
» 3-way, 4-way and 8-way set associative designs too

• Reduces misses due to conflicts• Reduces misses due to conflicts
• Larger sets imply slower accesses

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 27

2-way Set Associative Cache

ValueValidTag ValueValidTag

y

Index

0x00000410Y01
0x09D91D11N10
0x00000001Y11

0x000000CFY11
0x0000003BN10
0x00000002Y00

010
001
000

0x00012D10Y00
0x00000005N10
0x0349A291Y11

0x000000A2N10
0x00000333N11
0x00003333Y10

011
100

101 ⇒ 0x0349A291Y11
0x000123A8Y00
0x00000200N10

0x00003333Y10
0x0000C002Y01
0x00000005N10

101
110
111

⇒

The highlighted cache entry contains values for
addresses 10101xx2 and 11101xx2.

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 28

addresses 10101xx2 and 11101xx2.

Associativity Spectrumy p

Direct Mapped
Fast to access

Fully Associative
Slow to access

N-way Associative
Slower to access

Conflict Misses No Conflict MissesFewer Conflict Misses

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 29

Spatial Localityp y

• Using the cache improves performance by
taking advantage of temporal locality
» When a word in memory is accessed it is loaded

into cache memory
» It is then available quickly if it is needed again

soon
• This does nothing for spatial locality

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 30

Memory Blocksy
• Divide memory into blocks
• If any word in a block is accessed then load an• If any word in a block is accessed, then load an

entire block into the cache
» Usually called a cache line

Block 0 0x00000000–0x0000003F

Block 1 0x00000040–0x0000007F

Block 2 0x00000080–0x000000BF

Cache line for 16 word block size

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 31

w13 w14tag valid w15w12w11w10w9w8w7w6w5w4w3w2w1w0

Address Tags Revisitedg
• A cache block size > 1 word requires the address to

be divided differentlybe divided differently
• Instead of a byte offset into a word, we need a byte

offset into the blockoffset into the block
• Assume we have 10-bit addresses, 8 cache lines, and

4 words (16 bytes) per cache line block…

0101100111

10 bit Address

0101100111

0111110010

Block Offset (4)Index (3)Tag (3)

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 32

The Effects of Block Size
• Big blocks are good

» Fewer first time misses
» Exploits spatial locality

• Small blocks are good
» Don’t evict as much data when bringing in a new

tentry
» More likely that all items in the block will turn out

to be usefulto be useful

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 33

Reads vs. Writes

• Caching is essentially making a copy of the
data

• When you read, the copies still match the y , p
original after you’ve read the data

• When you write, the results must eventuallyWhen you write, the results must eventually
propagate to both copies
» Especially at the lowest (slowest largest) level of» Especially at the lowest (slowest, largest) level of

the hierarchy, which is in some sense the
permanent copy or the “truth”

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 34

p py

Write-Through Cachesg
• Write all updates to both cache and memory
• Advantages

» The cache and the memory are always consistent
» Evicting a cache line is cheap because no data

needs to be written out to memory at eviction
E t i l t» Easy to implement

• Disadvantages
R d h i i (» Runs at memory speeds when writing (can use
write buffer to reduce this problem)

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 35

Write-Back Caches
• Write the update to the cache only. Write to

memory only when cache block is evictedy y
• Advantage

» Runs at cache speed rather than memory speedp y p
» Some writes never go all the way to memory
» When a whole block is written back, can use

high bandwidth transferhigh bandwidth transfer
• Disadvantage

» complexity required to maintain consistency –» complexity required to maintain consistency –
what if another processor tries to read the same
memory location?

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 36

Dirty bity
• When evicting a block from a write-back

h ldcache, we could
» always write the block back to memory

i i b k l if h d i» write it back only if we changed it
• Caches use a “dirty bit” to mark if a line

h dwas changed
» the dirty bit is 0 when the block is loaded

it i t t 1 if th bl k i difi d» it is set to 1 if the block is modified
» when the line is evicted, it is written back only

if the dirty bit is 1
4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 37

if the dirty bit is 1

i-Cache and d-Cache

• There usually are two separate caches for
instructions and data.
» Avoids structural hazards in pipelining
» The combined cache is twice as big but still has an

access time of a small cache
» Allows both caches to operate in parallel, for twice

the bandwidth

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 38

Cache Line Replacementp

• How do you decide which cache block to
replace?

• If the cache is direct-mapped, it’s easypp , y
» only one slot per index

• Otherwise common strategies:Otherwise, common strategies:
» Random
» Least Recently Used (LRU)» Least Recently Used (LRU)

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 39

LRU Implementationsp
• LRU is very difficult to implement for high

d f i i idegrees of associativity
• 4-way approximation:

» 1 bit to indicate least recently used pair
» 1 bit per pair to indicate least recently used item in

this pairthis pair
• We will see this issue again at the operating

system level for virtual memory pagessystem level for virtual memory pages

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 40

Multi-Level Caches
• Use each level of the memory hierarchy as a

h h l l lcache over the next lowest level
• Inserting level 2 between levels 1 and 3

llallows:
» level 1 to have a higher miss rate (so can be

smaller and cheaper)smaller and cheaper)
» level 3 to have a larger access time (so can be

slower and cheaper)s owe a d c eape)

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 41

Summary: Classifying Cachesy y g
• Where can a block be placed?

Di t d N S t F ll i ti» Direct mapped, N-way Set or Fully associative
• How is a block found?

» Direct mapped: by index» Direct mapped: by index
» Set associative: by index and search
» Fully associative: by search

• What happens on a write access?
» Write-back or Write-through

hi h bl k h ld b l d• Which block should be replaced?
» Random
» LRU (Least Recently Used)

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 42

» LRU (Least Recently Used)

Not Explored (Yet?)p ()

• Cache Coherency in multiprocessor systems
• Want each processor to have its own cache

» Fast local access
» No interference with/from other processors

• But: now what happens if more than one• But: now what happens if more than one
processor accesses a cache line at the same
time?time?
» How do we keep multiple copies consistent?
» What about synchronization with main storage?

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 43

» What about synchronization with main storage?

