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Reading and Referencesg

• Readingg
» Computer Organization and Design, Patterson and 

Hennessy 
• Section 5.1 Introduction
• Section 5.2 The Basics of Caches
• Section 5.3 Measuring and Improving Cache 

Performance
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Large and Fastg

• We’d like our computers to have memory p y
systems that are:
» Large – big enough to hold large data sets, media g g g g ,

files (audio/image/video), databases, etc.
» Fast – in particular, fast enough so the processor 

doesn’t have to wait around for data 
• (i.e., single-cycle access times)

» Cheap – of course!!
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Small or Slow
• Unfortunately there is a tradeoff between speed, cost, and 

capacity

Storage Speed Cost Capacity

Static RAM Fastest Expensive Smallest

Dynamic RAM Slow Cheap Large

Hard disks Slowest Cheapest Largest

• Fast memory is too expensive to buy a lot (for most people)
• But DRAM is too slow compared to the processor – can’t p p

have every lw or sw access DRAM (long cycle times or lots 
of stalls)

• And there’s no way we can fetch instructions from disk!y
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Some rough estimatesg

• As of about 2008
Storage Delay Cost/MB Capacity

Static RAM 1-10 cycles ~$2-$5 128K-2MB
Dynamic RAM 100-200 cycles ~$0.02-0.08 128MB-8GB
Hard Disks 10,000,000+ cycles $0.0002-$0.002 20GB-1000GB

• Exact numbers have changed over time, but 
the ratios have stayed surprisingly similar

• Flash memory is appearing in the niche between DRAM and disks, but is 
not a major player in desktop systems – yet.
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A Solution:  Memory Hierarchyy y

• Keep copies of the active• Keep copies of the active 
data in the small, fast, 
expensive storage

fast, small, 
expensive

expensive storage
• Keep all data in the big, 

l h

storage

slow, cheap storage
• Move frequently used data slow, large, 

cheap storage
to fast memory –
automatically

cheap storage
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What is a Cache?
• A cache allows for fast accesses to a subset of a larger 

ddata store
• Very general idea – Example: your web browser’s cache 

i f t t i it d tlgives you fast access to pages you visited recently
» faster because it’s stored locally
» subset because the web won’t fit on your disk» subset because the web won t fit on your disk 

• The memory cache gives the processor fast access to 
memory that it used recentlymemory that it used recently
» faster because it’s expensive; usually located on the CPU chip
» subset because the cache is smaller than main memory
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Memory Hierarchyy y

R i

CPU

Registers

L1 hL1 cache

L2 Cache

Main Memory
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Localityy

• It’s usually difficult or impossible to figure out y p g
a program’s memory access patterns without 
running itg

• If programs accessed memory randomly it 
would be hard to automatically identify whatwould be hard to automatically identify what 
data and instructions are “hot” and move them 
to faster cache memoryto faster cache memory

• Fortunately most programs exhibit locality, 
which the cache can take advantage ofwhich the cache can take advantage of
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Principle of Localityp y
• Temporal locality - nearness in time

» Data being accessed now will probably be accessed» Data being accessed now will probably be accessed 
again soon

» Useful data tends to continue to be useful
S i l l li i dd• Spatial locality - nearness in address
» Data near the data being accessed now will probably be 

needed soon
» Useful data is often accessed sequentially

• Applies to both instructions and data
• Remember –this is observed behavior that we can 

take advantage of, not something that is necessarily 
consciously designed (although it can be)
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Memory Access Patternsy

• Memory accesses 
d ’t ll l k

• Memory accesses do 
ll l k lik thidon’t usually look 

like this
» random accesses

usually look like this
– hot variables

step through arrays
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Temporal locality in programs
• The principle of temporal locality says that if a program accesses one 

memory address, there is a good chance that it will access the same address 

p y p g

y , g
again.

• Loops are excellent examples of temporal locality in programs.
» The loop body will be executed many times.
» The computer will need to access those same few locations of the instruction» The computer will need to access those same few locations of the instruction 

memory repeatedly.
• For example: 

Loop: lw $t0  0($s1)Loop: lw $t0, 0($s1)
add $t0, $t0, $s2
sw $t0, 0($s1)
addi $s1, $s1, -4
bne $s1  $0  Loop

» Each instruction will be fetched over and over again, once on every loop 
iteration.

bne $s1, $0, Loop
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Temporal locality in data
• Programs often access the same variables over and over, 

especially within loops Below sum and i are repeatedly

p y

especially within loops. Below, sum and i are repeatedly 
read and written.

sum  0;sum = 0;
for (i = 0; i < MAX; i++)

sum = sum + f(i);

• Commonly-accessed variables can sometimes be kept in 
registers, but this is not always possible.g , y p
» There are a limited number of registers.
» There are situations where the data must be kept in memory, as is 

the case with shared or dynamically-allocated memory.
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Spatial locality in programs
• The principle of spatial locality says that if a program accesses one 

memory address, there is a good chance that it will also access other

p y p g

memory address, there is a good chance that it will also access other 
nearby addresses.

sub $sp, $sp, 16
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $a0, 8($sp)
sw $a1, 12($sp)

• Nearly every program exhibits spatial locality, because instructions 
are usually executed in sequence—if we execute an instruction at y q
memory location i, then we will probably also execute the next 
instruction, at memory location i+1.

• Code fragments such as loops exhibit both temporal and spatial 
locality
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Spatial locality in data
• Programs often access 

data that is stored 
contiguously

p y
sum = 0;
for (i = 0; i < MAX; i++)

sum = sum + a[i];contiguously.
» Arrays, like a in the 

code on the top, are 
stored in memory employee name = “Homer Simpson”;

[ ];

stored in memory 
contiguously.

» The individual fields of 
a record or object like

employee.name = Homer Simpson ;
employee.boss = “Mr. Burns”;
employee.age = 45;

a record or object like 
employee are also kept 
contiguously in 
memory.memory.

• Can data have both 
spatial and temporal 
locality?
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How caches take advantage of temporal localityg p y
• The first time the processor reads from 

an address in main memory, a copy of 
h d i l d i h h

CPU

that data is also stored in the cache.
» The next time that same address is read, we 

can use the copy of the data in the cache 
d f i h l d iinstead of accessing the slower dynamic 

memory.
» So the first read is a little slower than 

b f i it th h b th i

A little static
RAM (cache)

before since it goes through both main 
memory and the cache, but subsequent 
reads are much faster.

Thi t k d t f t l
Lots of

dynamic RAM
• This takes advantage of temporal 

locality—commonly accessed data is 
stored in the faster cache memory.
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How caches take advantage of spatial localityg p y
• When the CPU reads location i from main 

memory, a copy of that data is placed in the 
cache. CPU

• But instead of just copying the contents of 
location i, we can copy several values into the 
cache at once, such as the four bytes from 
l ti i th h i + 3locations i through i + 3.
» If the CPU later does need to read from locations i

+ 1, i + 2 or i + 3, it can access that data from the 
cache and not the slower main memory.

A little static
RAM (cache)

y
» For example, instead of reading just one array 

element at a time, the cache might actually be 
loading four array elements at once.

• Again the initial load incurs a performance
Lots of

dynamic RAM• Again, the initial load incurs a performance 
penalty, but we’re gambling on spatial locality 
and the chance that the CPU will need the extra 
data.

dynamic RAM
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Definitions: Hits and misses
• A cache hit occurs if the cache contains the data that we’re 

looking for Hits are good because the cache can return thelooking for. Hits are good, because the cache can return the 
data much faster than main memory.

• A cache miss occurs if the cache does not contain the 
requested data This is bad since the CPU must then waitrequested data. This is bad, since the CPU must then wait 
for the slower main memory.

• There are two basic measurements of cache performance.
Th hit t i th t f th t» The hit rate is the percentage of memory accesses that are 
handled by the cache.

» The miss rate (1 - hit rate) is the percentage of accesses that must 
be handled by the slower main RAM.be handled by the slower main RAM.

• Typical caches have a hit rate of 95% or higher, so in fact 
most memory accesses will be handled by the cache and will 
be dramatically faster.
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Effective Access Time

cache 
miss rate

cache 
hit rate

teffective = (h)tcache + (1-h)tmemory

effective 
access time

memory access 
time

cache 
access time

aka, Average Memory Access Time (AMAT)
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Cache Contents

• When do we put something in the cache?
» when it is used for the first time

• or when we access something nearby

• When do we overwrite something in the cache?
» when we need the space in the cache for some other p

entry
» all of memory won’t fit on the CPU chip so not 

every location in memory can be cached
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A small two-level hierarchyy

8-word cache8-word cache
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Fully Associative Cachey

0x00000001Y0010100

ValueValidAddress• In a fully associative 
cache,

0x00012D10Y0101100

0x00000410Y0100100

0x09D91D11N0000100» any memory word can 
be placed in any cache 
line 0x00012D10Y0101100

0x00000005N0001100

0x0349A291Y1101100

» each cache line stores an 
address and a data value 

0x000123A8Y0100000

0x00000200N1111100

» accesses are slow (but 
not as slow as you might 
think)
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Direct Mapped Cachespp
• Fully associative caches are often too slow
• With direct mapped caches the address of the item• With direct mapped caches the address of the item 

determines where in the cache to store it
» In our example, the lowest order two bits are the byte» In our example, the lowest order two bits are the byte 

offset within the word stored in the cache
» The next three bits of the address are an index that 

di t t th l ti f th t ithi th hdictates the location of the entry within the cache
» The remaining higher order bits record the rest of the 

original address as a tag for this entryg g y
• The tag bits indicate the actual memory location of the word 

in a particular cache line
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Address Tagsg

• A tag is a label for a cache entry indicating where it 
fcame from

» The upper bits of the data item’s address
• The index indicates where the entry goes in the cache• The index indicates where the entry goes in the cache

7 bit Address

1011101

Byte Offset (2)Index (3)Tag (2)

0111110
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Direct Mapped Cachepp

C hM
Cache Contents

0x00000001Y11
ValueValidTag

0002 = 0

Cache
Index

1000100
1100000

Memory
Address

0x00012D10Y00
0x00000410Y01
0x09D91D11N10

0112 = 3
0102 = 2
0012 = 1

0001100
0101000

1000100

0x00000005N10
0x0349A291Y11
0x000123A8Y00

1002 = 4
1012 = 5
1102 = 6

1010000

1110100
0011000 0x000123A8Y00

0x00000200N10
1102  6
1112 = 7

0011000
1011100
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N-way Set Associative Cachesy
• Direct mapped caches cannot store more than one 

dd i h h i daddress with the same index
• If two addresses collide, then you overwrite the 

ld tolder entry
• 2-way associative caches can store two different 

addresses with the same indexaddresses with the same index
» 3-way, 4-way and 8-way set associative designs too

• Reduces misses due to conflicts• Reduces misses due to conflicts
• Larger sets imply slower accesses
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2-way Set Associative Cache

ValueValidTag ValueValidTag

y

Index

0x00000410Y01
0x09D91D11N10
0x00000001Y11

0x000000CFY11
0x0000003BN10
0x00000002Y00

010
001
000

0x00012D10Y00
0x00000005N10
0x0349A291Y11

0x000000A2N10
0x00000333N11
0x00003333Y10

011
100

101 ⇒ 0x0349A291Y11
0x000123A8Y00
0x00000200N10

0x00003333Y10
0x0000C002Y01
0x00000005N10

101
110
111

⇒

The highlighted cache entry contains values for 
addresses 10101xx2 and 11101xx2.
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Associativity Spectrumy p

Direct Mapped
Fast to access

Fully Associative
Slow to access

N-way Associative
Slower to access

Conflict Misses No Conflict MissesFewer Conflict Misses
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Spatial Localityp y

• Using the cache improves performance by 
taking advantage of temporal locality
» When a word in memory is accessed it is loaded 

into cache memory
» It is then available quickly if it is needed again 

soon
• This does nothing for spatial locality
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Memory Blocksy
• Divide memory into blocks
• If any word in a block is accessed then load an• If any word in a block is accessed, then load an 

entire block into the cache
» Usually called a cache line

Block 0 0x00000000–0x0000003F

Block 1 0x00000040–0x0000007F

Block 2 0x00000080–0x000000BF

Cache line for 16 word block size
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Address Tags Revisitedg
• A cache block size > 1 word requires the address to 

be divided differentlybe divided differently
• Instead of a byte offset into a word, we need a byte 

offset into the blockoffset into the block
• Assume we have 10-bit addresses, 8 cache lines, and 

4 words (16 bytes) per cache line block…

0101100111

10 bit Address

0101100111

0111110010

Block Offset (4)Index (3)Tag (3)
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The Effects of Block Size
• Big blocks are good

» Fewer first time misses
» Exploits spatial locality

• Small blocks are good
» Don’t evict as much data when bringing in a new 

tentry
» More likely that all items in the block will turn out 

to be usefulto be useful
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Reads vs. Writes

• Caching is essentially making a copy of the 
data

• When you read, the copies still match the y , p
original after you’ve read the data

• When you write, the results must eventuallyWhen you write, the results must eventually 
propagate to both copies
» Especially at the lowest (slowest largest) level of» Especially at the lowest (slowest, largest) level of 

the hierarchy, which is in some sense the 
permanent copy or the “truth”
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Write-Through Cachesg
• Write all updates to both cache and memory
• Advantages

» The cache and the memory are always consistent
» Evicting a cache line is cheap because no data 

needs to be written out to memory at eviction
E t i l t» Easy to implement

• Disadvantages
R d h i i (» Runs at memory speeds when writing (can use 
write buffer to reduce this problem)
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Write-Back Caches
• Write the update to the cache only.  Write to 

memory only when cache block is evictedy y
• Advantage

» Runs at cache speed rather than memory speedp y p
» Some writes never go all the way to memory
» When a whole block is written back, can use 

high bandwidth transferhigh bandwidth transfer
• Disadvantage

» complexity required to maintain consistency –» complexity required to maintain consistency –
what if another processor tries to read the same 
memory location?
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Dirty bity
• When evicting a block from a write-back 

h ldcache, we could
» always write the block back to memory

i i b k l if h d i» write it back only if we changed it 
• Caches use a “dirty bit” to mark if a line 

h dwas changed
» the dirty bit is 0 when the block is loaded

it i t t 1 if th bl k i difi d» it is set to 1 if the block is modified
» when the line is evicted, it is written back only 

if the dirty bit is 1
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i-Cache and d-Cache

• There usually are two separate caches for 
instructions and data.  
» Avoids structural hazards in pipelining
» The combined cache is twice as big but still has an 

access time of a small cache
» Allows both caches to operate in parallel, for twice 

the bandwidth
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Cache Line Replacementp

• How do you decide which cache block to 
replace?

• If the cache is direct-mapped, it’s easypp , y
» only one slot per index

• Otherwise common strategies:Otherwise, common strategies:
» Random
» Least Recently Used (LRU)» Least Recently Used (LRU)
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LRU Implementationsp
• LRU is very difficult to implement for high 

d f i i idegrees of associativity
• 4-way approximation:

» 1 bit to indicate least recently used pair
» 1 bit per pair to indicate least recently used item in 

this pairthis pair
• We will see this issue again at the operating 

system level for virtual memory pagessystem level for virtual memory pages
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Multi-Level Caches
• Use each level of the memory hierarchy as a 

h h l l lcache over the next lowest level
• Inserting level 2 between levels 1 and 3 

llallows:
» level 1 to have a higher miss rate (so can be 

smaller and cheaper)smaller and cheaper)
» level 3 to have a larger access time (so can be 

slower and cheaper)s owe a d c eape )
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Summary: Classifying Cachesy y g
• Where can a block be placed?

Di t d N S t F ll i ti» Direct mapped, N-way Set or Fully associative
• How is a block found?

» Direct mapped: by index» Direct mapped: by index
» Set associative: by index and search
» Fully associative: by search

• What happens on a write access?
» Write-back or Write-through

hi h bl k h ld b l d• Which block should be replaced?
» Random
» LRU (Least Recently Used)
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Not Explored (Yet?)p ( )

• Cache Coherency in multiprocessor systems
• Want each processor to have its own cache

» Fast local access
» No interference with/from other processors

• But: now what happens if more than one• But: now what happens if more than one 
processor accesses a cache line at the same 
time?time?
» How do we keep multiple copies consistent?
» What about synchronization with main storage?

4/26/2009 cse410-13-cache ©2006-09 Perkins, DW Johnson and University of Washington 43

» What about synchronization with main storage?


