
Pipelining – Part 2

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 1

Reading and Referencesg

• Computer Organization and Design, Patterson and
Hennessy. Feel free to skim or ignore the hardware
details. For our purposes, we’re interested in the
i t ti b t th i t ti t d thinteraction between the instruction stream and the
processor pipeline stages.
» Section 4 6 pp 356-357 (graphical pipeline representations)» Section 4.6, pp. 356-357 (graphical pipeline representations)
» Section 4.7 Data Hazards: Forwarding vs Stalling
» Section 4.8 Control Hazards

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 2

Control Hazards

• Branch instructions cause control hazards (aka
b h h d) b d ’ k hi hbranch hazards) because we don’t know which
instruction to fetch next

we don’t know
until here

IF ID EX MEM WBbne $s0, $s1, skip

IF ID EX MEM WB

$, $, p

add $s4, $s3, $s0

...

do we fetch the
add or the sub?

skip:

sub $s4, $s3, $s0

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 3

Idea: Stall for branch hazard

• Stall until we know which instruction to
execute next
» would introduce a 4-cycle pipeline bubble in the y p p

basic pipeline

IF ID EX MEM WB

IF ID EX MEM WBstall
bne $s0, $s1, next

sub $s4 $s3 $s0 stallsub $s4, $s3, $s0

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 4

Idea: Move Branch Logic to IDg

• Move the branch hardware to ID stageg
» Hardware to compare two registers is simpler than

hardware to add them
• We still have to stall for one cycle
• And we can’t move the branch up any moreAnd we can t move the branch up any more

IF ID EX MEM WB

IF ID EX MEM WBstall

bne $s0, $s1, next

sub $s4, $s3, $s0

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 5

Idea: Reorder Instructions

• Reordering instructions is a common
technique for avoiding pipeline stalls

• Static reordering
» programmer, compiler and assembler do this

• Dynamic reordering
» modern processors can see several instructions
» they execute any that have no dependency
» this is known as out-of-order execution and is

complicated to implement but effective

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 6

Branch Delay Sloty

• A branch now causes a stall of one cycley
• Try to execute an instruction instead of nop
• The compiler (assembler programmer) must• The compiler (assembler, programmer) must

find an instruction to fill the branch delay slot
» 50% of the instructions are useful» 50% of the instructions are useful
» 50% are nops which don’t do anything

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 7

Branch Delay Slot executiony

• Instruction in the branch delay slot alwaysInstruction in the branch delay slot always
executes, no matter what the branch does
» it follows the branch in memory» it follows the branch in memory
» but it “piggybacks” and is always executed
» no bubble at all» no bubble at all

IF ID EX MEM WBbne $s0, $s1, next

IF ID EX MEM WBsub $s4, $s3, $s0

IF ID EX MEM WBadd $s3,$s3,1

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 8

actual instruction sequence after reordering by assembler

beq with delay slotq y
.set noreorder
.set nomacro
beq $v0,$zero,$L4

$ 1 $ 4move $s1,$s4
.set macro
set reorder.set reorder

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 9

jal with delay slotj y
move $a0,$s3
move $a1,$s0
.set noreorder

t.set nomacro
jal QuickSort
move $a2,$s4move $a2,$s4
.set macro
.set reorder

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 10

Idea: Predict the branch action

• For example, assume the branch is not takenp
» Execute the next instruction in memory

• If we guessed right we’re goldenIf we guessed right, we re golden
» no bubble at all

• If we guessed wrong then we lose a little• If we guessed wrong, then we lose a little
» squash the partially completed instructions.

Thi i ll d fl hi h i li» This is called flushing the pipeline
» Wasted time, but would have stalled anyway

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 11

Squash q

• Must be able to completely suppress the p y pp
effects of guessing wrong
» An instruction cannot write to memory or a y

register until we’re sure it should execute

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 12

Assume Branch Not Taken

bne $s0,$zero,Done
addi $t0,$t0,1
addi $t0 $t0 3

IF ID EX MEM WB

Branch not taken
bne

addi $t0,$t0,3
Done: move $t1,$t0 IF ID EX MEM WB

IF ID EX MEM WB

addi

addi

B h t k
IF ID EX MEM WB

IF SQUASH

Branch taken
bne

addi

IF ID EX MEM WB

IF SQUASHaddi

move

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 13

Static Branch Prediction

• Most backwards branch are taken (80%)()
» they are part of loops

• Half of forward branches are taken (50%)Half of forward branches are taken (50%)
» if statements

• Common static branch prediction scheme is• Common static branch prediction scheme is
» predict backwards branches are taken

di f d b h k» predict forward branches are not taken
• This does okay (70-80%), but not great

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 14

Dynamic Branch Predictiony

• Most programs are pretty regular
» Most of the time only execute a small subset of

the program code
S b h i i dl» Same branch instructions execute repeatedly

• A particular branch instruction is usually:
» taken if it was taken last time
» not taken if it was not taken last time
f k hi f h b h• If we keep a history of each branch

instruction, then we can predict much better

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 15

Dynamic Branch Predictiony

• The CPU records what happened last time
we executed the branch at this addresswe executed the branch at this address

• Generally record last two results
» simple 4-state transition table makes prediction

• Dynamic branch prediction is 92-98%
accurate

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 16

2-bit prediction schemep

taken

not taken

predict: taken predict: taken

taken
t t k

00 01

taken not taken

not taken

predict: not takenpredict: not taken

taken
not taken

10 11

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 17

Implementing Branch Predictionp g

• There is not room to store every branch y
instruction address
» so last few bits of the instruction address are used

to index into a table
» some instructions collide like a hash table
» but that’s okay, it just means we’re wrong once in

a while

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 18

Branch Prediction Table

11

...

state?
......

not taken0x00401234

PredictAddress
...

yes

correct?

11

...

new state

not taken100x0040223C

00

11

taken0x004F0238

not taken0x00401234

no

no

yes

00

01

11

.........

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 19

Importance of Branch Predictionp

• Branches occur very frequently
» every five instructions on average» every five instructions on average

• Modern processors execute up to 4 instructions
per cycle
» so a branch occurs every 2 cycles

• Newer pipelines are getting longer
» 8 9 11 13 cycles» 8,9,11,13 cycles
» error penalty is 3-5 cycles instead of 1 cycle
» hard to fill branch delay slots

B t e en ne er pipelines are act all getting• But even newer pipelines are actually getting
shorter! (Intel Atom, multicores, …)
» It’s all design tradeoffs```

4/23/2009 cse410-11-pipelining-b © 2006-09 Perkins, DW Johnson and University of Washington 20

