
From Source to Execution:
Translation and LinkingTranslation and Linking

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 1

Readings and Referencesg

• Reading g
» Section 2.12, Translating and Starting a Program
» Appendix B 1 Introduction» Appendix B.1, Introduction
» Appendix B.2, Assemblers

A di B 3 Li k» Appendix B.3, Linkers
» Appendix B.4, Loading

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 2

Starting a Programg g

• Two phases from source code to executionp
• Build time

» compiler creates assembly code» compiler creates assembly code
» assembler creates machine code
» linker creates an executable» linker creates an executable
(Spim assembles/links when file loaded)

R ti• Run time
» loader moves the executable into memory and

t t th
4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 3

starts the program

Build Time
• You’re experts on generating assembly language:

ith b iti hi h l l d th t i il deither by writing high-level code that is compiled,
or by hand

• Two parts to translating from assembly toTwo parts to translating from assembly to
machine language:
» Instruction encoding (including translating

pseudoinstructions)pseudoinstructions)
» Translating labels to addresses

• Label translations go in the symbol tablebe s o s go e y
» Symbol table: map from labels (names) to their

addresses in the code

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 4

Modular Program Designg g

• Small projects might use only one file
» Any time any one line changes, recompile and

reassemble the whole thing
• For larger projects, recompilation time and

complexity management is significant
• Solution: split project into modules

» compile and assemble modules separately
» link the object files

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 5

The Compiler + Assemblerp

• Translate source files to object files
• Object files

» Contain machine instructions (1’s & 0’s)
» Contain bookkeeping information

• Procedures and variables the object file defines
(l b l)(globals)

• Procedures and variables the object file uses but does
not define (unresolved [or external] references)

• Debugging information associating machine
instructions with lines of source code

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 6

The Linker

• The linker’s job is to “stitch together” the
object files:
1. Place the modules in memory space
2. Determine the addresses of data and labels
3. Match up references between modules

• Creates an executable file

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 7

Determining Addressesg

• Some addresses change during memory layout
• Modules were compiled/assembled in isolation

» Assembler assigns addresses starting at 0 during assembly
Fi l dd i d b li k» Final addresses assigned by linker

• Absolute addresses must be relocated
• Object file keeps track of instructions that use• Object file keeps track of instructions that use

absolute addresses

t t
text

text

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 8

Linker Examplep

code: code:
main.o area.o

main:A=area(5.0)
static data:

PI = 3.1415
defined symbols:

Area:return PI*r*r
static data:

defined symbols:defined symbols:
main, PI

undefined symbols:
Area

defined symbols:
Area

undefined symbols:
PI

header
code: main:A=area(5.0)

main.exe

code: main:A area(5.0)
Area:return PI*r*r

static data: PI = 3.1415
defined symbols: main, PI, Area

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 9

Libraries
• Some code is used so often, it is bundled into

l b flibraries for common access
• Libraries contain most of the code you use but

didn’t write: e.g., printf(), sqrt()
• Library code is (often) merged with yours at y () g y

link time

imain.o

libc.a
main.exe

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 10

The Executable

• End result of compiling, assembling, and p g g
linking: the executable
» Header, listing the lengths of the other segments, g g g
» Text (code) segment
» Static data segment» Static data segment
» Potentially other segments, depending on

architecture & OS conventions

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 11

Run Time

• When a program is started ...
» Some dynamic linking may occur

• some symbols aren’t defined until run time
Wi d ’ dll (d i li k lib)• Windows’ dlls (dynamic link library)

» The segments are loaded into memory
» The OS transfers control to the program and it» The OS transfers control to the program and it

runs
• We’ll learn a lot more about this during the OSWe ll learn a lot more about this during the OS

part of the course

4/16/2009 cse410-08-link © 2006-09 Perkins, DW Johnson and University of Washington 12

