
Procedures

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 1

Readings and Referencesg

• Reading
» Section 2.8, Supporting Procedures in Computer Hardware
» Section B.5, Memory Usage
» Section B 6 Procedure Call Convention» Section B.6, Procedure Call Convention

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 2

Instructions and Data flow

instructions and

program counter

instructions and
data

main
memory

increments by 4

registersinstructions
and data

32 bits wide
32 in numbery

functional units
implement instructions

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 3

Layout of program memory

7FFF EFFF stack (grows down)

reserved (4KB)7FFF FFFF

y p g y

stack (grows down)

~1792 MB

1000 FFFF

Not to
Scale!heap (grows up)1001 0000

0FFF FFFF
1000 0000
1000 FFFF

program (text) (252 MB)

global data (64 KB)

reserved (4 MB)
0000 0000

003F FFFF

0040 0000

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 4

Why use procedures?y p

• So far, our program is just one long run of p g j g
instructions

• We can do a lot this way, but the programWe can do a lot this way, but the program
rapidly gets too large to handle easily

• Procedures allow the programmer to organize• Procedures allow the programmer to organize
the code into logical units

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 5

What does a procedure do for us?p

• A procedure provides a well defined and p p
reusable interface to a particular capability
» entry, exit, parameters clearly identifiedy, , p y

• Reduces the level of detail the programmer
needs to know to accomplish a taskneeds to know to accomplish a task

• Caller can ignore the internals of a function
d t il b hidd f i t» messy details can be hidden from innocent eyes

» internals can change without affecting caller

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 6

How does a procedure call work?p

1. set up parametersp p
2. transfer to procedure
3 acquire storage resources3. acquire storage resources
4. do the desired function
5. make result available to caller
6. release storage resourcesg
7. return to point of call

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 7

Calling conventionsg

• The details of how you implement the steps for y p p
using a procedure are governed by the calling
conventions being usedg

• There is much variation in conventions
» which causes much programmer pain» which causes much programmer pain

• Understand the calling conventions of the
system you are writing forsystem you are writing for
» o32, n32, n64, P&H, cse410, ...

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 8

1. Set up parametersp p

• The registers are one obvious place to put g p p
parameters for a procedure to read
» very fast and easily referencedy y

• Many procedures have 4 or less arguments
» MIPS: $a0 $a1 $a2 $a3 are used for arguments» MIPS: $a0, $a1, $a2, $a3 are used for arguments

• … but some procedures have more
d ’t t t ll th i t» we don’t want to use up all the registers

» so we use memory to store the rest

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 9

The Stack

• Stack pointer ($sp) points to the “top” value on p (p) p p
the stack (ie, the lowest address in use)

• MIPS has no “push” or “pop” instructionsMIPS has no push or pop instructions
» we adjust the stack pointer directly

• Stack grows downward towards zero• Stack grows downward towards zero
» subu $sp, $sp, xx : make room for more data

dd $ $ l th t k» addu $sp, $sp, xx : release space on the stack
» note that both subu and addu become addiu

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 10

Dynamic storage on the stacky g

main:main:
subu $sp,$sp,8
...

...
jal main

0x7fffedf8
0x7fffedfc
0x7fffee00

0($sp)
4($sp)
8($sp)

8($sp)
12($sp)
16($sp)

0x7fffee0412($sp) 20($sp)

0x7fffedf8
0x7fffedf4
0x7fffedf0
0x7fffedec
0x7fffede8

0($sp)

0($sp)
4($sp)
8($sp)

0x7fffede8
0x7fffede4

towards 0

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 11

$sp 0x7fffedf8 $sp 0x7fffedf0

Layout of stack framey

argument build areag
(if needed)

saved registers
(if needed)

$sp (on entry)

(if needed)

local variables
(if needed)

procA:
subu $sp,$sp,xx
...

k
fr

am
e

argument build area
(if needed)

$

st
ac

k

towards 0

$sp (after subu)

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 12

Argument build areag

• Some MIPS calling conventions require that g q
caller reserve stack space for all arguments
» 16 bytes (4 words) left empty to mirror $a0-$a3y () p y

• Other calling conventions require that caller
reserve stack space only for arguments that doreserve stack space only for arguments that do
not fit in $a0 - $a3

» so argument build area is only present if some» so argument build area is only present if some
arguments didn’t fit in 4 registers

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 13

Agreementg

• A procedure and all of the programs that call it p p g
must agree on the calling convention

• This is one reason why changing the callingThis is one reason why changing the calling
convention for system libraries is a big deal

• We will use• We will use
» caller reserves stack space for all arguments

16 b t (4 d) l ft t t i $ $» 16 bytes (4 words) left empty to mirror $a0-$a3

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 14

2. Transfer to procedurep
main:
subu $sp $sp 8... subu $sp,$sp,8
...

$ $

jal main

0x7fffedf8
0x7fffedfc
0x7fffee00

0x7fffedf4
0($sp)
4($sp)
8($sp)

4($sp)
8($sp)
12($sp)
16($sp)

0x7fffee0412($sp) 20($sp)

0x7fffedf4
0x7fffedf0
0x7fffedec
0x7fffede8
0x7fffede4

0($sp)
4($sp)

0x7fffede4

$sp 0x7fffedf8 $sp 0x7fffedf0

towards 0

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 15

$sp 0x7fffedf0

Jump and linkp

• Jump p
» can take you anywhere within the currently active

256 MB segment
• Link

» store return address in $ra» store return address in $ra
» note: this overwrites current value of $ra

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 16

3. Acquire storage resourcesq g

argument build area
(if d d)(if needed)

saved registers
(if needed)

$sp (on entry)

local variables
(if needed)

procA:
subu $sp,$sp,40
sw $ra,32($sp)
sw $s0,28($sp) ck

 fr
am

e

argument build area
(if needed)

sw $s0,28($sp)

$sp (after subu)

st
ac

towards 0

$sp (after subu)

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 17

3a. Saved registers g

• There is only one set of registersy g
» If called procedure unexpectedly overwrites them,

caller will be surprised and distressed
• Another agreement

» called procedure can change $a0-$a3, $v0-$v1,» called procedure can change $a0 $a3, $v0 $v1,
$t0-$t9 without restoring original values

» called procedure must save and restore value of p
any other register it wants to use

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 18

Register numbers and names

number name usage

g

0

1

2-3

zero

at

v0, v1

always returns 0

reserved for use as assembler temporary

values returned by procedures

4-7

8-15, 24, 25

16-23

a0-a3

t0-t9

s0-s7

y p

first few procedure arguments

temps - can use without saving

temps - must save before using16 23

26,27

28

29

s0 s7

k0, k1

gp

sp

temps - must save before using

reserved for kernel use - may change at any time

global pointer

t k i t29

30

31

sp

fp or s8

ra

stack pointer

frame pointer

return address from procedure

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 19

3b. Local variables

• If the called procedure needs to store values in p
memory while it is working, space must be
reserved on the stack for them

• Debugging note
» compiler can often optimize so that all variables fit» compiler can often optimize so that all variables fit

in registers and are never stored in memory
» so a memory dump may not contain all values» so a memory dump may not contain all values
» use switches to turn off optimization (but …)

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 20

3c. Argument build areag

• Our convention is
» caller reserves stack space for all arguments
» 16 bytes (4 words) left empty to mirror $a0-$a3y () p y $ $

• If your procedure does more than one call to
other procedures thenother procedures, then ...
» the argument build area must be large enough for

the largest set of argumentsthe largest set of arguments

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 21

Using the stack pointerg p

• Adjust it once on entry, once on exitj y
» Initial adjustment should include all the space you

will need in this procedure
• Remember that a word is 4 bytes

» so expect to see references like 8($sp), 20($sp)» so expect to see references like 8($sp), 20($sp)
• Keep stack pointer double word aligned

» adjust by multiples of 8» adjust by multiples of 8

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 22

4. Do the desired function

• You have saved the values of the registers that g
must be preserved across the call

• The arguments are in $a0 - $a3 or on the stackThe arguments are in $a0 $a3 or on the stack
• The stack pointer points to the end of your

stack framestack frame
• Let ‘er rip

i l i i fil i» signal processing, image filter, encryption, …

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 23

5. Make result available to caller

• Registers $v0 and $v1 are available for thisg
• Most procedures put a 32-bit value in $v0
• Returning the address of a variable?• Returning the address of a variable?

» be very careful!
ti f th t k i i lid» your portion of the stack is invalid as soon as you

return
» the object must be allocated in caller’s part of» the object must be allocated in caller s part of

stack (or somewhere further back), or globally
allocated (heap or static storage)

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 24

allocated (heap or static storage)

6. Return storage resourcesg

argument build area
(if needed)

d i t

$sp (after addu)

saved registers
(if needed)

local variables

lw $ra,32($sp)
lw $s0,28($sp)
addu $sp,$sp,40 am

e

local variables
(if needed)

argument build area

jr $ra

st
ac

k
fr

a

g
(if needed)

$sp (while executing)

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 25

towards 0

7. Return to point of callp

• Jump through registerp g g
• The address of the instruction following the

jump and link was put in $ra when we werejump and link was put in $ra when we were
called (the “link” in jump and link)

• We have carefully preserved $ra while the• We have carefully preserved $ra while the
procedure was executing
S “j $ ” t k i ht b k t ll• So, “jr $ra” takes us right back to caller

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 26

CSE 410 Calling Conventionsg
• Argument build area

ll k f ll» caller reserves stack space for all arguments
» 16 bytes (4 words) left empty to mirror $a0-$a3

• Called procedure adjusts stack pointer once on
entry, once on exit, in units of 8 bytes

• Register usage in functions
» not required to save and restore $t0-$t9, $a0-$a3q ,
» must save and restore $s0-$s8, $ra if changed
» function results returned in $v0, $v1

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 27

» function results returned in $v0, $v1

Leaf proceduresp

• A leaf procedure is one that does not call p
another procedure

• Relatively simple register usage since theRelatively simple register usage since the
procedure doesn’t call anyone else

• Little or no memory access requirements• Little or no memory access requirements
because you are not saving and restoring as
many registers from the stackmany registers from the stack

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 28

Non-leaf procedurep

• A non-leaf procedure is one that calls another p
procedure

• You must save at least register $ra, since that ou us s ve e s eg s e $ a, s ce
register is overwritten by the jal when you
call another procedurecall another procedure

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 29

Calling treeg

main:
…
jal procA
…
j $ra

procA:

Non-leaf
p
…
jal procB
…
j $ra

procB:

Leaf
procB:
…
jal procC
…
j $ra

procC:
…
j $ra

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 30

Layout of stack frame (little leaf)y ()

argument build areag
(if needed)

saved registers
(if needed)

$sp (on entry)

(if needed)

k
fr

am
e

local variables
(if needed)

argument build area
(not needed)procC:

st
ac

k

towards 0

subu $sp,$sp,xx
...

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 31

Layout of stack frame (big leaf)y (g)

argument build areag
(if needed)

saved registers
(if needed)

$sp (on entry)

(if needed)

k
fr

am
e

local variables
(if needed)

argument build area
(not needed)procC:

$sp (after subu)

st
ac

k

towards 0

subu $sp,$sp,xx
...

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 32

Layout of stack frame (non-leaf)y ()

argument build areag
(if needed)

saved registers
(if needed)

$sp (on entry)

(if needed)

local variables
(if needed)

procA:
subu $sp,$sp,xx
...

k
fr

am
e

argument build area
(maximum needed)

$

st
ac

k

towards 0

$sp (after subu)

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 33

Little leaf example - swap.cp p
/* Swap two integer array elements */

void swap(int a[], int i, int j)
{

int T;
T = a[i];
a[i] = a[j];[] [j];
a[j] = T;

}

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 34

Little leaf example - swap.sp p
swap:

ll $ 1 $ 1 2 # $ 1 4*isll $a1,$a1,2 # $a1 = 4*i
addu $a1,$a1,$a0 # $a1 = addr(a[i])
lw $v1,0($a1) # $v1 = a[i]
sll $a2,$a2,2 # $a2 = 4*j
addu $a2,$a2,$a0 # $a2 = addr(a[j])
lw $v0,0($a2) # $v0 = a[j]$, ($) # $ [j]
sw $v0,0($a1) # a[i] = old a[j]
sw $v1,0($a2) # a[j] = old a[i]
j $ra # ret rnj $ra # return

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 35

Non-leaf example - QuickSort.cp Q
void QuickSort(int a[], int lo0, int hi0)
{

int lo = lo0;
i t hi hi0int hi = hi0;
int mid;

if (hi0 > lo0)
{
...

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 36

Non-leaf example - QuickSort.sp Q

QuickSort:
subu $sp,$sp,48 # create stack frame
sw $ra,40($sp) #
sw $s5,36($sp) #p
sw $s4,32($sp) #
sw $s3,28($sp) #
sw $s2 24($sp) #sw $s2,24($sp) #
sw $s1,20($sp) #
sw $s0,16($sp) #
move $s3,$a0 # $s3 = address(a)
move $s5,$a1 # $s5 = lo0
...

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 37

Layout of QuickSort stack framey Q

argument build areag
(if needed)

$sp (on entry)

36

40

44 not used

$ra

$s5

QuickSort:
subu $sp,$sp,48
...

k
fr

am
e

20

24

28

32

36 $s5

$s4

$s3

$s2

$s1

saved registers

$

st
ac

k

4

8

12

16

$

$s0

argument build area
for recursive call

$a3

$a2

$a1

towards 0

$sp (after subu) 0 $a0

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 38

$ra - Return Address$

• Return address register
» written with jal, jalr instructions
» must be saved if procedure calls another

QuickSort:
subu $sp,$sp,48 # create stack framesubu $sp,$sp,48 # create stack frame
sw $ra,40($sp) #
. . .
l $ 40($) # t f t klw $ra,40($sp) # restore from stack …
addu $sp,$sp,48 #
j $ra # return

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 39

$fp - Frame Pointer$ p

• Frame pointer points to the largest address in p p g
the stack frame

• Stack pointer points to the smallest address inStack pointer points to the smallest address in
the stack frame
» no advantage to $fp if $sp does not change during» no advantage to $fp if $sp does not change during

procedure’s execution
• Consider $fp to be $s8Consider $fp to be $s8

» save and restore required if you use it

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 40

Layout of stack frame (with $fp)y ($ p)

argument build areag
(if needed)

saved registers
(if needed)

$sp (on entry)
$fp (after save and set)

(if needed)

local variables
(if needed)

procA:
subu $sp,$sp,xx
...

k
fr

am
e

argument build area
(maximum needed)

$

st
ac

k

towards 0

$sp (after subu)

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 41

$s0-$s7 - Save and Restore$ $

• These registers are available for unlimited useg
• Must save immediately on procedure entry and

restore just before procedure exit if you arerestore just before procedure exit if you are
going to use them

• As a result of this convention the registers will• As a result of this convention, the registers will
have the same values after a procedure call as
they had beforethey had before

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 42

$t0-$t9 - Temporary registers$ $ p y g

• Use however you likey
• No save and restore required or expected
• As a result of this convention the registers• As a result of this convention, the registers

have no guaranteed values when you get back
from calling another procedurefrom calling another procedure

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 43

$a0-$a3 , $v0-$v1 - Args/Return$ $, $ $ g

• The argument registers can be changed in a g g g
procedure without restriction

• No guarantee that they will be the same uponNo guarantee that they will be the same upon
return from a called procedure

• The result registers will contain whatever the• The result registers will contain whatever the
function prototype says they will
» undefined value in $v1 if not used for return» undefined value in $v1 if not used for return

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 44

Some Perspectivep

• These calling conventions can look very g y
complex
» but partly that’s just appalling documentationp y j pp g
» and the inclusion of debugging conventions

• Most functions that you may write inMost functions that you may write in
assembler for tuning reasons will be leaf
functionsfunctions
» the declaration of such a function is very simple

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 45

