Procedures

CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

4/8/2009

cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

Readings and References

e Reading
» Section 2.8, Supporting Procedures in Computer Hardware
» Section B.5, Memory Usage
» Section B.6, Procedure Call Convention

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

Instructions and Data flow

instructions and
data

main
memory

instructions

program counter

increments by 4

and data

reglsters 32 bits wide

32 1n number

functional units

implement i1nstructions

4/8/2009

cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

Layout of program memory

/FFF FFEE reserved (4KB)
7FFF EFFF stack (grows down)

. v |

i ~1792 MB |

i + ;

Not to
1001 0000 heap (grows up) Scale!
%888 5555 global data (64 KB)
OFFF FFFF
program (text) (252 MB)

0040 0000
O03F FFFF

reserved (4 MB)
0000 0000

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

Why use procedures?

e So far, our program Is just one long run of
Instructions

* \We can do a lot this way, but the program
rapidly gets too large to handle easily

* Procedures allow the programmer to organize
the code into logical units

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

What does a procedure do for us?

A procedure provides a well defined and
reusable interface to a particular capability

» entry, exit, parameters clearly identified

* Reduces the level of detail the programmer
needs to know to accomplish a task
 Caller can ignore the internals of a function

» messy details can be hidden from innocent eyes
» Internals can change without affecting caller

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

How does a procedure call work?

set up parameters

transfer to procedure

acquire storage resources

do the desired function

make result available to caller
release storage resources
return to point of call

2 A S A o

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

Calling conventions

* The details of how you implement the steps for
using a procedure are governed by the calling
conventions being used

* There Is much variation in conventions
» which causes much programmer pain

e Understand the calling conventions of the
system you are writing for
» 032, n32, n64, P&H, cse410, ...

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 8

1. Set up parameters

* The registers are one obvious place to put
parameters for a procedure to read

» very fast and easily referenced

* Many procedures have 4 or less arguments
» MIPS: $a0, $al, $a2, $a3 are used for arguments
e ... but some procedures have more

» we don’t want to use up all the registers
» SO We use memory to store the rest

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

The Stack

 Stack pointer ($sp) points to the “top” value on
the stack (ie, the lowest address In use)

 MIPS has no “push’ or “pop” Instructions

» we adjust the stack pointer directly

« Stack grows downward towards zero

» subu $sp, $sp, xx : make room for more data
» addu $sp, $sp, xx : release space on the stack
» note that both subu and addu become addiu

4/8/2009

cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 10

Dynamic storage on the stack

jal main

12($sp)

8($sp)

4($sp)

0($sp)

.

.

i
.

i

$sp | Ox7FfFfedf8

main:

Ox7fffeel4
Ox7ffFfee00
Ox7fffedfc
Ox7fffedf8
Ox7fffedf4
Ox7fffedfO
Ox7fffedec
Ox7fffede8
Ox7fffeded

towards O

|

20($sp)
16($sp)
12($sp)
8($sp)
R 4($sp)
L 0($sp)
7
7
7
_
$sp | Ox7FFfFedfO

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

11

Layout of stack frame

1 argument build area

$sp (on entry) — | (1T needed)

saved registers
T (1T needed)

procA:

subu $sp,$sp,xx T local variables

T (1T needed)

argument build area
T (1T needed)

$sp (after subu) — |

stack frame ————

towards O

|

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

12

Argument build area

 Some MIPS calling conventions require that
caller reserve stack space for all arguments

» 16 bytes (4 words) left empty to mirror $ao-$a3

 Other calling conventions require that caller

reserve stack space only for arguments that do
not fit in $a0 - $a3

» S0 argument build area is only present if some
arguments didn’t fit in 4 registers

4/8/2009 ¢se410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 13

Agreement

* A procedure and all of the programs that call it
must agree on the calling convention

« This 1s one reason why changing the calling
convention for system libraries is a big deal

e We will use

» caller reserves stack space for all arguments
» 16 bytes (4 words) left empty to mirror $ao-$a3

4/8/2009 ¢se410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 14

2. Transfer to procedure

12($sp)

8($sp)

4($sp)

0($sp)

-

7

i
.

o

$sp | Ox7FfFfedf8

main:

subu $sp,$sp,8

Ox7fffeel4
Ox7ffFfee00
Ox7fffedfc
Ox7fffedf8
Ox7fffedf4
Ox7fffedfO
Ox7fffedec
Ox7fffede8
Ox7fffeded

towards O

|

20($sp)
16 ($sp)
12($sp)
8($sp)
B 4(3sp)
L 0($sp)
7
7
7
_
$sp | Ox7FFfedfO

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

Jump and link

e Jump

» can take you anywhere within the currently active
256 MB segment

e Link
» store return address in $ra
» note: this overwrites current value of $ra

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

16

3. Acquire storage resources

1 argument build area

$sp (on entry) — | (1T needed)

saved registers
T (1T needed)

ProcA:

SW
SW

subu $sp,$sp,40 1

local variables

$ra,32($sp) T (if needed)

$s0,28($sp) 4

$sp (after subu) — |

argument build area
T (1T needed)

stack frame

towards O

|

4/8/2009

cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

17

3a. Saved registers

e There iIs only one set of registers

» |f called procedure unexpectedly overwrites them,
caller will be surprised and distressed

* Another agreement

» called procedure can change $a0-$a3, $v0-$v1,
$t0-$t9 without restoring original values

» called procedure must save and restore value of
any other register it wants to use

4/8/2009 ¢se410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 18

Register numbers and names

number name usage
o) zero always returns 0
1 at reserved for use as assembler temporary
2-3 vO, vl values returned by procedures
4-7 a0-a3 first few procedure arguments
8-15, 24, 25 t0-19 temps - can use without saving
16-23 s0-s7 temps - must save before using
26,27 kO, ki1 reserved for kernel use - may change at any time
28 ap global pointer
29 sSp stack pointer
30 fp or s8 frame pointer
31 ra return address from procedure

4/8/2009 ¢se410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 19

3b. Local variables

o |f the called procedure needs to store values In
memory while It Is working, space must be
reserved on the stack for them

e Debugging note

» compiler can often optimize so that all variables fit
In registers and are never stored in memory

» S0 a memory dump may not contain all values
» use switches to turn off optimization (but ...)

4/8/2009 ¢se410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 20

3c. Argument build area

e Our convention IS

» caller reserves stack space for all arguments

» 16 bytes (4 words)

left empty to mirror $ao0-$a3

* |f your procedure does more than one call to

other procedures, t

nen ...

» the argument builo

area must be large enough for

the largest set of arguments

4/8/2009 ¢se410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 21

Using the stack pointer

e Adjust It once on entry, once on exit

» Initial adjustment should include all the space you
will need in this procedure

 Remember that a word is 4 bytes
» SO expect to see references like 8($sp), 20($sp)

o Keep stack pointer double word aligned
» adjust by multiples of 8

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

22

4. Do the desired function

* You have saved the values of the registers that
must be preserved across the call

The arguments are in $a0 - $a3 or on the stack

"he stack pointer points to the end of your

stack frame
o Let ‘errip

» signal processing, image filter, encryption, ...

4/8/2009

cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 23

5. Make result available to caller

» Registers $v0 and $v1 are available for this
e Most procedures put a 32-bit value in $v0

e Returning the address of a variable?
» be very careful!

» your portion of the stack is invalid as soon as you
return

» the object must be allocated in caller’s part of
stack (or somewhere further back), or globally
allocated (heap or static storage)

4/8/2009 ¢se410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 24

6. Return storage resources

$sp (after addu) —

_ argument build area

1 (if needed)

e v
e v

\\\\\\\\\\\\\\\\\\\Save \\\m I:S:te S
et RS o g i S
e)
S e d S R
ki A i] \\\\REE: E\ N A
e e e e e e e e e e e SR v e e e e e e e e
o o o)
e v
e v

B i }\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

$ra

e v
e v

o e R il IR e
\\\\\\\\\\\\\\\\\t@é&l\\\\%ﬁ\E\a@\t‘éﬁ\\\\\\\\\\\\\\\\\\
e S iy

EaEEEEEERR R, ey e Ry Y
\\\\\\\\\\\\\\\\\\\\\\\ﬁ\t\f\\\m B
G R R O R Ay S

B

e v
e v

$sp (while executing) —

e v
e v
B e e e e e e e e e e R R R R R R R R
argumentrbunidrareais
iy \g bl R e S 0
T)
S) R N B
o hea bl T ey \\\\ne\e B R R
e e e e e e e e e G e e e e e e e e e e e e
o o o)
e v
e o e e e e e v v v v v v

«—— stack frame ——

towards O
|

4/8/2009

cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

25

/. Return to point of call

 Jump through register

e The address of the instruction following the
jump and link was put in $ra when we were
called (the “link” In jump and link)

* We have carefully preserved $ra while the
procedure was executing

e So, “jr $ra’ takes us right back to caller

4/8/2009 cse410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington

26

CSE 410 Calling Conventions

e Argument build area
» caller reserves stack space for all arguments
» 16 bytes (4 words) left empty to mirror $a0-$a3

» Called procedure adjusts stack pointer once on
entry, once on exit, in units of 8 bytes
* Register usage In functions

» not required to save and restore $t0-$t9, $a0-$a3
» must save and restore $s0-$s8, $ra if changed
» function results returned in $vO0, $v1

4/8/2009 ¢se410-06-procedures © 2006-09 Perkins, DW Johnson and University of Washington 27

Leaf procedures

A leaf procedure is one that does not call
another procedure

* Relatively simple register usage since the
procedure doesn’t call anyone else

 Little or no memory access requirements
because you are not saving and restoring as
many registers from the stack

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

28

Non-leaf procedure

* A non-leaf procedure is one that calls another
procedure

e You must save at least register $ra, since that
register is overwritten by the jal when you
call another procedure

4/8/2009 ¢se410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 29

Calling tree

main:
jal procA — I f
. - Non-lea
J $ra ‘//////
»| ProcA:
jal procB
, - |_eaf
J $ra
» ProcB:
jal procC
] $ra
» proccC:
J %ra
4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 30

Layout of stack frame (little leaf)

1 argument build area

$sp (on entry) — | (1T needed)
T saved regjstéfé
|- if Ticeded)
i I6cal. variables g
.« i f-rigeded) <
[Grmesded E
] argu bui rea

procC: T (n d
subu $sp,$sp, xx 1

towards O

|

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

Layout of stack frame (big leaf)

$sp (on entry) — | (1T needed)

1 argument build area

saved registers
T (1T needed)

local variables
T (1T needed)
$sp (after subu) — |

argu bul rea
procC: T (n d
subu $sp,$sp,xx

towards O

|

J— stack frame ——

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

32

Layout of stack frame (non-leaf)

1 argument build area

$sp (on entry) — | (1T needed)

saved registers
T (1T needed)

procA:
subu $sp,$sp,xx il

local variables
T (1T needed)

argument build area
(maximum needed)

«—— stack frame ——

$sp (after subu) — |

towards O

|

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

Little leaf example - swap.c

/* Swap two integer array elements */

void swap(int a[], int i, Int j)

{
int T;
T = ali1];
alf1] = alj1;
afj] = T;

¥

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

34

Little leaf example - swap.s

swap:
sl
addu
Iw
sl
addu
Iw
SW
SW

$al,%al,? # $al = 4*i
$al,%al,$al # $al = addr(al[i])
$vi,0($al) # $vl = a[i]
$a2,%a2,? # $a2 = 4*j
$a2,%a2,%a0 # $a2 = addr(aljl)
$v0,0(%$a2) # $v0 = alj]
$v0,0(%$al) # a[1] = old a[j]
$v1,0($a2) # alJ] = old a[i]
$ra # return

4/8/2009

cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 35

Non-leaf example - QuickSort.c

void QuickSort(int a[], int 100, int hiO)

1

int 1o = 100;
int hit = hiO;
iInNt mid;

iIT (hi0 > 100)
{

4/8/2009

cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

36

Non-leaf example - QuickSort.s

QuickSort:
subu $sp
Sw $ra
Sw $s5
Sw $s4
Sw $s3
Sw $s2
Sw $s1
Sw $s0
move $s3
move $s5

,$sp,48
,40($sp)
,36($sp)
,32($sp)
,28($sp)
,24($sp)
,20($sp)
,16($sp)
,$al
,$al

create stack frame

address(a)
100

4/8/2009

cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 37

Layout of QuickSort stack frame

1 argument build area

$sp (on entry) — | (1T needed)

44 | not used
40 | $ra
36 | $s5
QuickSort: 32| $s4 saved registers o
subu $sp,$sp,48 28 | $s3 S
24 $s2 ©
- - = -1 L]
20 $s1 X
- (&)
16 $s0 8
wn
12 $a3 -
s T sa2 @rgument build area
4: sal for recursive call
$sp (after subu) — o | sa0

towards O

|

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

$ra - Return Address

e Return address register
» Written with jal, jalr instructions
» must be saved If procedure calls another

QuickSort:
subu $sp,Psp,48 # create stack frame
SwW $ra,40($sp) #
Iw $ra,40($sp) # restore from stack ..

addu sp,Psp,48 #
] $ra # return

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

39

$fp - Frame Pointer

* Frame pointer points to the largest address In
the stack frame

 Stack pointer points to the smallest address In
the stack frame

» Nno advantage to $fp if $sp does not change during
procedure’s execution

» Consider $fp to be $s8
» save and restore required if you use it

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

40

Layout of stack frame (with $fp)

1 argument build area

$sp (on entry) — | (1T needed)

$fp (after save and set) —
| saved registers

T (1T needed)

procA:

subu $sp,$sp,xx T local variables

T (1T needed)

argument build area
(maximum needed)

$sp (after subu) — |

stack frame ————

towards O

|

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

41

$s0-$s7 - Save and Restore

* These registers are available for unlimited use

e Must save Immediately on procedure entry and
restore just before procedure exit if you are
going to use them

* As aresult of this convention, the registers will
have the same values after a procedure call as
they had before

4/8/2009 ¢se410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 42

$t0-$t9 - Temporary registers

o Use however you like
e No save and restore required or expected

e As aresult of this convention, the registers
have no guaranteed values when you get back
from calling another procedure

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

43

$a0-%a3 , $v0-$v1 - Args/Return

e The argument registers can be changed in a
procedure without restriction

* No guarantee that they will be the same upon
return from a called procedure

* The result registers will contain whatever the
function prototype says they will

» undefined value in $v1 if not used for return

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington

44

Some Perspective

* These calling conventions can look very
complex

» but partly that’s just appalling documentation
» and the inclusion of debugging conventions
* Most functions that you may write In

assembler for tuning reasons will be leaf
functions

» the declaration of such a function is very simple

4/8/2009 cse410-06-procedures-b © 2006-07 Perkins, DW Johnson & University of Washington 45

