Testing and Branching

CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

4/5/2009

cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

Reading and References

o Computer Organization and Design
» Section 2.6, Logical Operations
» Section 2.7, Instructions for Making Decisions
» Section B.9, SPIM

» Section B.10 through page B-50, MIPS R2000 Assembly
Language

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

Control Flow

o All Interesting programs have:
» Loops (while, for, do-while)
e With an occasional break or continue
» Conditionals (if, switch)
* Machines have:
» goto
» conditional goto

e Have to synthesize what we want from that

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

goto considered harmful

» "Oh what a tangled web we weave, When first
we practice to deceive!”

» Sir Walter Scott

e Branching in assembly language can turn your
program into a rat’s nest that cannot be
debugged

o Keep control flow simple and logical

o Use comments describing the overall logic
» (1f, while, for, ... pseudo-code is often great!)

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

Conditional Branch

o A change in the
program’s flow of

control that depends

T on some condition

yes

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

Branch instructions

e Branch instructions are I-format instructions
» 0p code field

» two register fields
» 16-bit offset field

o Simplest branches check for equality
» beq $t0, $tl, address
» bne $t0, $tl, address

e Meaning: If condition Is true, set PC = address
» I.e., fetch next instruction from address

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

i1t (1==)) then a=Db;

o Assume all values are In registers
* Note that the test is inverted compared to 1!

$t0=1, $tl=j, $sO=a, $sl=b

bne $tO, $tl, skip
move $s0, $sl
skip:

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

while (s[i1]==k) 1 = 1+];

$sO0=addr(s), $vi=i, $a0=k, $al=j

loop:
S
addu
Iw
addu
beq
subu

$vO,$v1,2 # vO = 4*1
$v0,$s0,$v0 # vO = addr(s[i])
$v0,0($v0) # VvO = s[i]

$vi,$vi,$al # i1 = 1+]j
$v0,%$a0, loop # loop if equal
$vi,$vi,$al # i1 = 1-j

4/5/2009

cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

for (i=0; i<10; i++) s[i] = i;

$sO=addr(s), $ti=i

move

loop:

sl
addu
SwW
addu
sit
bnez

$tl,%zero #1 =0

$t0,$t1,2 # t0 = i*4
$t0,$s0,$t0 # t0 = addr(s[i])
$t1,0($t0) # s[i] = i
$t1,$t1,1 # 1++

$t0,$t1,10 # 1f (i<10) $t0=1
$t0, loop # loop if (1<10)

4/5/2009

cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

How do we encode the destination?

 Calculating the destination address

» 4*(the 16-bit offset value) Is added to the Program
Counter (PC)

» This 1S calculated with the incremented value of
the PC after the branch instruction is fetched

e The offset i1s a word offset in this case

e The base register is always the PC, so we don’t
need to specify it In the instruction

» Covers a range of 21% words (64 KW)

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington 10

Comparison Instructions

e For comparisons other than equality

» slt :setlesst
» sltu :setlesst
» slti :setlesst
» sltiu :setlesst

nan
nan unsigned
nan constant value

nan unsigned constant

e settOto 1 if tl<t2, otherwise setto 0
st $t0, $tl1, $t2

4/5/2009 cse410-04-decision

s © 2006-09 Perkins, DWJohnson & University of Washington 11

Pseudo-Instructions

e The assembler is your friend and will build
Instruction sequences for you

e Original code:
bge $a0,%tl,end # 1f a0>=tl jump

e Pseudo-instruction; no such instruction in the real
processor hardware

e Actual Instructions:
st $at,$a0,$tl # 1T a0<tl at=true
beqg $at,$0,end # jJump 1T at==Talse

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington 12

Jump Instructions

« Jump Instructions provide longer range than
branch instructions

e 26-bit word offset in J-format Iinstructions

» | : jump

» jal > Jump and link (store return address)
o 32-bit address In register jJumps

» jr > Jump through register

» Jalr :jump through register and link

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

J-format fields

op code word offset

6 bits 26 bits

* The word offset value Is multiplied by 4 to
create a byte offset

» the result 1s 28 bits wide
e Then concatenated with top 4 bits of PC to
make a 32 bit destination address

» 1.e., can’t jump outside a 256MB segment (not
a problem in most real code)

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

Important Jumps

e Jump and link (jal)

» call procedure and store return address in $ra
« Jump through register (jr)

» return to caller using the address in $ra

 We will talk about procedure calls in
excruciating detail shortly

4/5/2009 cse410-04-decisions © 2006-09 Perkins, DWJohnson & University of Washington

