
Computer Instructionsp

CSE 410 Spring 2009CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 1



Reading and Referencesg
• Readings

C O i i d D i» Computer Organization and Design
• Section 2.1, Introduction
• Section 2 2 Operations of the Computer Hardware• Section 2.2, Operations of the Computer Hardware
• Section 2.3, Operands of the Computer Hardware
• Section 2 5 Representing InstructionsSection 2.5, Representing Instructions

• Other References
» See MIPS Run D Sweetman» See MIPS Run, D Sweetman

• section 8.6, Instruction encoding
• section 10 2 Endianness

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 2

• section 10.2, Endianness



Today’s Agenday g

• //pick a languagep g g
• A = B + C;  //say, c

• Lets convert this to a much more primitive 
i lprogramming language

» Assume A,B,C are associated with $t0,$t1,$t2 

• add $t0, $t1, $t2  #say, MIPS
3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 3

, , y,



A very simple organizationy p g

program counter

main
memory registersy

functional units

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 4



Instructions in main memoryy

• Instructions are stored in main memoryy
» each byte in memory has a number (an address)

• Program counter (PC) points to the nextProgram counter (PC) points to the next 
instruction
» All MIPS instructions are 4 bytes long and so» All MIPS instructions are 4 bytes long, and so 

instruction addresses are always multiples of 4
• Program addresses are 32 bits long• Program addresses are 32 bits long

» 232 = 4,294,967,296 = 4 GigaBytes (GB)

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 5



Instructions in memoryy

... ... ... ......

16

20

instruction

4

8

12addresses

0

4

instruction value

instruction value

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 6



Fetch/Execute Cycley

• Operation of a computer:
while (processor not halted) {

fetch instruction at memory location (PC)
PC = PC + 4 (increment to point to next instruction)
execute fetched instruction

}}

• Instructions execute sequentially unless a jump or 
branch changes the PC to cause the next instruction tobranch changes the PC to cause the next instruction to 
be fetched from somewhere else

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 7



Some common storage unitsg
Note that a byte is 8 bits on almost all machines.  
The definition of word is less uniform (4 and 8 bytes are common today).

# bitit
A nibble is 4 bits (half a byte!)

byte 8

# bitsunit

half-word

word

16

32

double word 64

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 8



Alignmentg

• An object in memory is “aligned” when its j y g
address is a multiple of its size

• Byte: always alignedByte: always aligned 
• Halfword: address is multiple of 2

W d dd i lti l f 4• Word: address is multiple of 4
• Double word: address is multiple of 8
• Alignment simplifies load/store hardware

» And is required by MIPS, but not x86

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 9

q y ,



System organization so fary g

i t ti d

program counter

instructions and
data

main
memory

program counter
increments by 4

registers32-bit
instructionsmemory

functional units

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 10



MIPS Registersg

• 32 bits wide 
» 32 bits is 4 bytes
» same as a word in memoryy
» signed values from -231 to +231-1
» unsigned values from 0 to 232-1» unsigned values from 0 to 2 1

• easy to access and manipulate
» 32 registers (not related to being 32 bits wide)» 32 registers (not related to being 32 bits wide)
» on chip, so very fast to access

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 11



Register addressesg

• 32 general purpose registersg p p g
• how many bits does it take to identify a 

register?register?
» 5 bits, because 25 = 32

• 32 registers is a compromise selection• 32 registers is a compromise selection
» more would require more bits to identify & cost 

more to save/restore when switching processesmore to save/restore when switching processes
» fewer would be harder to use efficiently

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 12



Register numbers and names

0 l 0

number name usage

g

0

1

2-3

zero

at

v0, v1

always returns 0

reserved for use as assembler temporary

values returned by procedures

4-7

8-15, 24, 25

16-23

a0-a3

t0-t9

s0-s7

first few procedure arguments

temps - can use without saving

temps - must save before using
26,27

28

29

k0, k1

gp

sp

reserved for kernel use - may change at any time

global pointer

stack pointer
30

31

fp or s8

ra

frame pointer

return address from procedure

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 13



How are registers used?g

• Many instructions use 3 registersy g
» 2 source registers
» 1 destination registerg

• For example
» add $t1, $a0, $t0» add $t1, $a0, $t0

• add a0 and t0 and put result in t1
» add $t1,$zero,$a0

• move contents of a0 to t1 (t1 =  0 + a0)

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 14



R-format instructions: 3 registersg

• 32 bits available in the instruction
• 15 bits for the three 5-bit register numbers
• The remaining 17 bits are available for• The remaining 17 bits are available for 

specifying the instruction 
» 6 bit op code basic instruction identifier» 6-bit op code - basic instruction identifier
» 5-bit shift amount (25 = 32…)

6 bit f ti d» 6-bit function code

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 15



R-format fields

d 1 2 d t h t f tiop code source 1 source 2 dest shamt function

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

• some common R format instructions• some common R-format instructions
» arithmetic: add, sub, mult, div

l i l d ll l» logical: and, or, sll, srl
» comparison: slt (set on less than)
» jump through register: jr

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 16



Bits are just bitsj

• The bits mean whatever the designer says they g y y
mean when the ISA is defined

• How many possible 3-register instructions areHow many possible 3 register instructions are 
there?
» 217 = 131 072» 2  131,072
» includes all values of op code, shamt, function

• As the ISA develops over the years the• As the ISA develops over the years, the 
encoding tends to become less logical

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 17



System organization again

i t ti d

y g g

program counter

instructions and
data

main
memory

program counter
increments by 4

registers32-bit
instructions

32 bits wide
32 in numbermemory

functional units
implement instructionsp

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 18



Transfer from memory to registery g

• Load instructions
» word: lw  rt, address
» half word: lh  rt, address

lh ddlhu rt, address 
» byte: lb  rt, address

lbu rt, addresslbu rt, address

• signed load => sign bit is extended into the 
upper bits of destination registerupper bits of destination register

• unsigned load => 0 in upper bits of register

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 19



Transfer from register to memoryg y

• Store instructions

» word: sw  rt, address

» half word: sh  rt, address

» byte: sb  rt, address

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 20



The “address” term

• There is one basic addressing mode:g
offset + base register value

• Offset is 16 bits (± 32 KB)Offset is 16 bits (± 32 KB)
• Load word pointed to by s0, add t1, store

lw $t0 0($s0)lw $t0,0($s0)
add $t0,$t0,$t1
sw $t0,0($s0)$ , ($ )

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 21



I-format fields

op code base reg src/dest offset or immediate value

Th f h b i d h

p g

6 bits 5 bits 5 bits 16 bits

• The contents of the base register and the 
offset value are added together to generate 
th dd f th fthe address for the memory reference

• Can also use the 16 bits to specify an 
immediate value, rather than an address

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 22



Instructions and Data flow

instructions and

program counter

instructions and
data

main
memory

increments by 4

registersinstructions
and data

32 bits wide
32 in numbery

functional units
implement instructions

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 23



The eye of the beholdery

• Bit patterns have no inherent meaningp g
• A 32-bit word can be seen as 

» a signed integer (± 2 Billion)» a signed integer (± 2 Billion)
» an unsigned integer or address pointer (0 to 4GB)
» a single precision floating point number» a single precision floating point number
» four 1-byte characters
» an instruction» an instruction

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 24



Big-endian, little-endiang ,

• A 32-bit word in memory is 4 bytes longy y g
• But which byte is which address?
• Consider the 32 bit number 0x01234567• Consider the 32-bit number 0x01234567

» four bytes: 01, 23, 45, 67
t i ifi t bit 0 01» most significant bits are 0x01

» least significant bits are 0x67

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 25



Data in memory- big endiany g

Big endian - most significant bits are in byte 0 of the word

... ... ... ...... byte # contents
7 67

4

8

12

01 23 45 67

6 45
5 23

0

4

0 1 2 3 b t ff t

01 23 45 67 4 01

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 26

0 1 2 3 byte offsets



Data in memory- little endiany

Little endian - least significant bits are in byte 0 of the word

... ... ... ...... byte # contents
7 01

4

8

12

01 23 45 67

6 23
5 45

0

4

3 2 1 0 b t ff t

01 23 45 67 4 67

3/31/2009 cse410-02-instructions © 2006-09 Perkins, DWJohnson & University of  Washington 27

3 2 1 0 byte offsets


