
CSE410 Sp07 24-1

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 1

Synchronization Part 2

CSE 410, Spring 2007
Computer Systems

http://www.cs.washington.edu/410

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 2

Readings and References

• Reading
» Chapter 7, Sections 7.4 through 7.7, Operating System Concepts,

Silberschatz, Galvin, and Gagne

• Other References
» The Java Tutorial, Synchronizing Threads
» http://java.sun.com/docs/books/tutorial/essential/threads/multithreaded.html

» http://java.sun.com/docs/books/tutorial/essential/threads/monitors.html

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 3

Shared Stack Data Structure
void Stack::Push(Item *item) {

item->next = top;
top = item;

}

• Suppose two threads, red and blue, share this
code and a Stack s

• The two threads both operate on s
» each calls s->Push(…)

• Execution is interleaved by context switches

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 4

• Now suppose that a context switch occurs at
an “inconvenient” time, so that the actual
execution order is

1 item->next = top;
2 item->next = top;
3 top = item;

4 top = item;

Stack Example

context switch from red to blue

context switch from blue to red

CSE410 Sp07 24-2

Disaster Strikes

top

time 0

top

time 1

top

time 2

top

time 3

top

time 4
item->next = top; item->next = top; top = item; top = item;

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 6

Shared Stack Solution

• How do we fix this using locks?

void Stack::Push(Item *item) {
lock->Acquire();
item->next = top;
top = item;
lock->Release();

}

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 7

Correct Execution

• Only one thread can hold the lock

lock->Acquire();
item->next = top;

top = item;
lock->Release();

lock->Acquire();
wait for lock acquisition

item->next = top;
top = item;
lock->Release();

Correct Execution

top top

Red
acquires

the lock

Blue tries to
acquire the

lock

top

Red
releases

the lock

Blue
acquires
the lock

top

top

Blue
releases

the lock

CSE410 Sp07 24-3

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 9

How can Pop wait for a Stack item?

• This works okay if we don't want to wait inside Pop and can just return <no
data available>

• But in order to wait we need to go to sleep inside the critical section
» other threads won't be able to run because Pop holds the lock!
» condition variables make it possible to go to sleep inside a critical

section, by releasing the lock and going to sleep in one atomic operation

Stack::Push(Item * item) {
lock->Acquire();
push item on stack
lock->Release();

}

Item * Stack::Pop() {
lock->Acquire();
pop item from stack
lock->Release();
return item;

}

Synchronized stack using locks

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 10

Monitors

• Monitor: a lock and condition variables
• Key addition is the ability to inexpensively and

reliably wait for a condition change
• Can be implemented as a separate class

» The class contains code and private data
» Since the data is private, only monitor code can access it
» Only one thread is allowed to run in the monitor at a time

• Can be implement directly in other classes using
locks and condition variables

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 11

Condition Variables

• A condition variable is a queue of threads
waiting for something inside a critical section

• There are three operations
» Wait()--release lock & go to sleep (atomic);

reacquire lock upon awakening
» Signal()--wake up one waiting thread, if any
» Broadcast()--wake up all waiting threads

• A thread must hold the lock when doing
condition variable operations

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 12

Stack with Condition Variables

Pop can now wait for something to be pushed
onto the stack

Stack::Push(Item *item) {
lock->Acquire();
push item on stack
condition->signal(lock);
lock->Release();

}

Item *Stack::Pop() {
lock->Acquire();
while(nothing on stack) {
condition->wait(lock);

}
pop item from stack
lock->Release();
return item;

}

CSE410 Sp07 24-4

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 13

Synchronization in Win2K/XP

• Windows has locks (known as mutexes)
» CreateMutex--returns a handle to a new mutex
» WaitForSingleObject--acquires the mutex
» ReleaseMutex--releases the mutex

• Windows has condition variables (known as events)
» CreateEvent--returns a handle to a new event
» WaitForSingleObject--waits for the event to happen
» SetEvent--signals the event, waking up one waiting

thread

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 14

Synchronization in Java

• Java has locks (on any object)
» The Java platform associates a lock with every object that has
synchronized code

» A method or a code block {...} can be synchronized
» The lock is acquired before the block is entered and released

when the block is exited

• Java has condition variables (wait lists)
» The Object class defines wait(), notify(), notifyAll() methods
» By inheritance, all objects of all classes have those methods

