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Synchronization Part 2

CSE 410, Spring 2007
Computer Systems

http://www.cs.washington.edu/410
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Readings and References

• Reading 
» Chapter 7, Sections 7.4 through 7.7, Operating System Concepts, 

Silberschatz, Galvin, and Gagne

• Other References
» The Java Tutorial, Synchronizing Threads
» http://java.sun.com/docs/books/tutorial/essential/threads/multithreaded.html

» http://java.sun.com/docs/books/tutorial/essential/threads/monitors.html
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Shared Stack Data Structure
void Stack::Push(Item *item) {

item->next = top;
top = item;

}

• Suppose two threads, red and blue, share this 
code and a Stack s

• The two threads both operate on s
» each calls s->Push(…)

• Execution is interleaved by context switches
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• Now suppose that a context switch occurs at 
an “inconvenient” time, so that the actual 
execution order is

1 item->next = top;
2 item->next = top;
3 top = item;

4 top = item;

Stack Example

context switch from red to blue

context switch from blue to red
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Disaster Strikes
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item->next = top; item->next = top; top = item; top = item;
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Shared Stack Solution

• How do we fix this using locks?

void Stack::Push(Item *item) {
lock->Acquire();
item->next = top;
top = item;
lock->Release();

}
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Correct Execution

• Only one thread can hold the lock

lock->Acquire();
item->next = top;

top = item;
lock->Release();

lock->Acquire();
wait for lock acquisition

item->next = top;
top = item;
lock->Release();

Correct Execution
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How can Pop wait for a Stack item?

• This works okay if we don't want to wait inside Pop and can just return <no 
data available>

• But in order to wait we need to go to sleep inside the critical section
» other threads won't be able to run because Pop holds the lock!
» condition variables make it possible to go to sleep inside a critical 

section, by releasing the lock and going to sleep in one atomic operation

Stack::Push(Item * item) {
lock->Acquire();
push item on stack
lock->Release();

}

Item * Stack::Pop() {
lock->Acquire();
pop item from stack
lock->Release();
return item;

}

Synchronized stack using locks

5/17/2007 cse410-24-synchronization-p2 © 2006-07 Perkins, DW Johnson and University of Washington 10

Monitors

• Monitor: a lock and condition variables
• Key addition is the ability to inexpensively and 

reliably wait for a condition change
• Can be implemented as a separate class

» The class contains code and private data
» Since the data is private, only monitor code can access it
» Only one thread is allowed to run in the monitor at a time

• Can be implement directly in other classes using 
locks and condition variables
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Condition Variables

• A condition variable is a queue of threads 
waiting for something inside a critical section

• There are three operations
» Wait()--release lock & go to sleep (atomic); 

reacquire lock upon awakening
» Signal()--wake up one waiting thread, if any
» Broadcast()--wake up all waiting threads

• A thread must hold the lock when doing 
condition variable operations
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Stack with Condition Variables

Pop can now wait for something to be pushed 
onto the stack

Stack::Push(Item *item) {
lock->Acquire();
push item on stack
condition->signal( lock );
lock->Release();

}

Item *Stack::Pop() {
lock->Acquire();
while( nothing on stack ) {  
condition->wait( lock );

}
pop item from stack
lock->Release();
return item;

}
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Synchronization in Win2K/XP

• Windows has locks (known as mutexes)
» CreateMutex--returns a handle to a new mutex
» WaitForSingleObject--acquires the mutex
» ReleaseMutex--releases the mutex

• Windows has condition variables (known as events)
» CreateEvent--returns a handle to a new event
» WaitForSingleObject--waits for the event to happen
» SetEvent--signals the event, waking up one waiting 

thread
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Synchronization in Java

• Java has locks (on any object)
» The Java platform associates a lock with every object that has 
synchronized code

» A method or a code block {...} can be synchronized
» The lock is acquired before the block is entered and released 

when the block is exited

• Java has condition variables (wait lists)
» The Object class defines wait(), notify(), notifyAll() methods
» By inheritance, all objects of all classes have those methods


