Cache Memory

CSE 410, Spring 2007
Computer Systems

http://www.cs.washington.edu/410

412212007

©se410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

Reading and References

» Reading
» Computer Organization and Design, Patterson and Hennessy

¢ Section 7.1 Introduction
¢ Section 7.2 The Basics of Caches
« Section 7.3 Measuring and Improving Cache Performance

» Reference
» Chapter 4, See MIPS Run, D. Sweetman

4/22/2007

cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 2

The Quest for Speed - Memory

If all memory accesses (IF/lw/sw) accessed
main memory, programs would run 20 times
slower
And it’s getting worse

» processors speed up by 50% annually

» memory accesses speed up by 9% annually

» it’s becoming harder and harder to keep these
processors fed

412212007

cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

A Solution: Memory Hierarchy

» Keep copies of the active

. fast, small,
data in the small, fast, expensive
expensive storage storage

» Keep all data in the big,
slow, large,

slow, cheap storage

cheap storage

412212007

cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 4

CSE410 Sp07

13-1

Memory Hierarchy

What is a Cache?

« A cache allows for fast accesses to a subset of a larger

data store

* Your web browser’s cache gives you fast access to pages

you visited recently
» faster because it’s stored locally
» subset because the web won’t fit on your disk

» The memory cache gives the processor fast access to

memory that it used recently

» faster because it’s fancy and usually located on the CPU chip

» subset because the cache is smaller than main memory

4/22/2007

cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 6

Memory | Fabrication | Access |Typ. Size| $/MB
Level Tech Time (ns) | (bytes) |(Circa?)
Registers | Registers <0.5 256 1000
L1 Cache SRAM 1 64K 100
L2 Cache SRAM 10 M 100
Memory DRAM 100 512M 100
Disk Magnetic 10M 100G 0.0035
Disk
Memory Hierarchy
Registers
CPU
L1 cache
L2 Cache
Main Memory

412212007

cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

COMPLEX
INSTRUCTION
SUPPOAT

SUPERSCALER
INTEGER
EXECUTION
UNITS

412212007

cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 8

CSE410 Sp07

13-2

Locality of reference

» Temporal locality - nearness in time

» Data being accessed now will probably be
accessed again soon

» Useful data tends to continue to be useful
« Spatial locality - nearness in address

» Data near the data being accessed now will
probably be needed soon

» Useful data is often accessed sequentially

Memory Access Patterns

412212007 ©se410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 9

- W R H

-

. .

e Memory accesses « Memory accesses do
don’t usually look usually look like this
like this — hot variables

» random accesses — step through arrays

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

Cache Terminology

* Hit and Miss

» the data item is in the cache or the data item is not in the
cache

» Hit rate and Miss rate
» the percentage of references that the data item is in the
cache or not in the cache
» Hit time and Miss time

» the time required to access data in the cache (cache access
time) and the time required to access data not in the cache
(memory access time)

Effective Access Time

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 1

cache cache
hit rate miss rate
| |
teffective - (h)tcache + (1_h)tmemory
f
effective cache memory access

access time access time time

aka, Average Memory Access Time (AMAT)

CSE410 Sp07

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

13-3

Cache Contents

» When do we put something in the cache?
» when it is used for the first time

* When do we overwrite something in the cache?

» when we need the space in the cache for some other
entry

» all of memory won’t fit on the CPU chip so not
every location in memory can be cached

412212007 ©se410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 13

A small two-level hierarchy

8-word cache

116 = 1110100
120 = 1111000
124 = 1111100

[e)elslc)oNa]
i nn
O oON©O

AN

32-word memory (128 bytes)

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 14

Fully Associative Cache

Direct Mapped Caches

* Inafully associative Address | Valid Value

cache, 0010100 Y | 0x00000001

» any memory word can 0000100 N | 0x09D91D11

be placed in any cache 0100100 Y | 0x00000410

line 0101100 Y | 0x00012D10

» each cache line stores an 0001100 N 0x00000005
address and a data value 1101100 YV | 0x0349A291

» accesses are slow (but 0100000 Y | 0x000123A8
R?_t i; slow as you might 1111100 N | 0x00000200

in

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 15

 Fully associative caches are often too slow

 With direct mapped caches the address of the
item determines where in the cache to store it
» In our example, the lowest order two bits are the
byte offset within the word stored in the cache
» The next three bits of the address dictate the
location of the entry within the cache

» The remaining higher order bits record the rest of
the original address as a tag for this entry

CSE410 Sp07

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 16

13-4

Address Tags

» Atag is a label for a cache entry indicating
where it came from
» The upper bits of the data item’s address

7 bit Address

1011101
Tag (2) Index (3) Byte Offset (2)
10 111 01

412212007 ©se410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

Direct Mapped Cache

Cache Contents

Memory Cache

Address Tag Valid Value Index

1100000 11 Y 0x00000001 000, = O
1000100 10 N 0x09D91D11 001, = 1
0101000 01 Y 0x00000410 010, = 2
0001100 00 Y 0x00012D10 011, = 3
1010000 10 N 0x00000005 100, = 4
1110100 11 Y | 0x0349A291 101, = 5
00171000 00 Y 0x000123A8 _‘]_:I_O2 =6
10@00 10 N 0x00000200 111, = 7

4/22/2007

cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

N-way Set Associative Caches

 Direct mapped caches cannot store more than one

address with the same index
« If two addresses collide, then you overwrite the

older entry

* 2-way associative caches can store two different

addresses with the same index
» 3-way, 4-way and 8-way set associative designs too

» Reduces misses due to conflicts
* Larger sets imply slower accesses

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

2-way Set Associative Cache

Index Tag | Valid Value Tag | Valid Value

000 11 Y 0x00000001 00 Y 0x00000002
001 10 N 0x09D91D11 10 N 0x0000003B
010 01 Y 0x00000410 11 Y 0x000000CF
011 00 Y 0x00012D10 10 N 0x000000A2
100 10 N 0x00000005 11 N 0x00000333
101 = | 11 Y 0x0349A291 10 Y 0x00003333
110 00 Y 0x000123A8 01 Y 0x0000C002
111 10 N 0x00000200 10 N 0x00000005

The highlighted cache entry contains values for
addresses 10101xx, and 11101xx,.

412212007

cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

CSE410 Sp07

13-5

Associativity Spectrum

— =

Direct Mapped N-way Associative Fully Associative
Fast to access Slower to access Slow to access
Conflict Misses Fewer Conflict Misses No Conflict Misses

412212007 ©se410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 2

Spatial Locality

* Using the cache improves performance by
taking advantage of temporal locality

» When a word in memory is accessed it is loaded
into cache memory

» Itis then available quickly if it is needed again
soon

« This does nothing for spatial locality

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

Memory Blocks

 Divide memory into blocks

* If any word in a block is accessed, then load
an entire block into the cache

Block 0 0x00000000-0x0000003F

Block 1 0x00000040-0x0000007F

Block 2 0x00000080-0x000000BF

Cache line for 16 word block size
tag | valid

Wo

wy

Wy | Ws

Wy

Ws

We

wy

Wg

Wg

Wio

Wy

Wi,

Wig

Wyg

Wis I

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 23

Address Tags Revisited

» A cache block size > 1 word requires the address to
be divided differently

« Instead of a byte offset into a word, we need a byte
offset into the block

* Assume we have 10-bit addresses, 8 cache lines, and
4 words (16 bytes) per cache line block...

10 bit Address
0101100111
Tag (3) Index (3) Block Offset (4)
010 110 0111

CSE410 Sp07

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

13-6

The Effects of Block Size

Reads vs. Writes

* Big blocks are good
» Fewer first time misses
» Exploits spatial locality
» Small blocks are good
» Don’t evict as much data when bringing in a new
entry
» More likely that all items in the block will turn out
to be useful

 Caching is essentially making a copy of the
data

* When you read, the copies still match when
you’re done

* When you write, the results must eventually
propagate to both copies

» Especially at the lowest level of the hierarchy,
which is in some sense the permanent copy

412212007 ©se410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 25

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 26

Write-Through Caches

Write-Back Caches

» Write all updates to both cache and memory
» Advantages
» The cache and the memory are always consistent

» Evicting a cache line is cheap because no data
needs to be written out to memory at eviction

» Easy to implement
 Disadvantages

» Runs at memory speeds when writing (can use
write buffer to reduce this problem)

» Write the update to the cache only. Write to
memory only when cache block is evicted

» Advantage
» Runs at cache speed rather than memory speed
» Some writes never go all the way to memory
» When a whole block is written back, can use

high bandwidth transfer

 Disadvantage

» complexity required to maintain consistency

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 27

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 28

CSE410 Sp07

13-7

Dirty bit

» When evicting a block from a write-back
cache, we could
» always write the block back to memory
» write it back only if we changed it

» Caches use a “dirty bit” to mark if a line
was changed
» the dirty bit is 0 when the block is loaded
» it is set to 1 if the block is modified

» when the line is evicted, it is written back only
if the dirty bitis 1

i-Cache and d-Cache

412212007 ©se410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

29

 There usually are two separate caches for
instructions and data.
» Avoids structural hazards in pipelining

» The combined cache is twice as big but still has an
access time of a small cache

» Allows both caches to operate in parallel, for twice
the bandwidth

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 30

Cache Line Replacement

» How do you decide which cache block to
replace?
* If the cache is direct-mapped, it’s easy
» only one slot per index
» Otherwise, common strategies:
» Random
» Least Recently Used (LRU)

LRU Implementations

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

31

» LRU is very difficult to implement for high
degrees of associativity

 4-way approximation:
» 1 bit to indicate least recently used pair
» 1 bit per pair to indicate least recently used item in

this pair

» We will see this again at the operating system

level

CSE410 Sp07

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 32

13-8

Multi-Level Caches

Summary: Classifying Caches

» Use each level of the memory hierarchy as a
cache over the next lowest level

* Inserting level 2 between levels 1 and 3
allows:

» level 1 to have a higher miss rate (so can be
smaller and cheaper)

» level 3 to have a larger access time (so can be
slower and cheaper)

» Where can a block be placed?
» Direct mapped, N-way Set or Fully associative
How is a block found?
» Direct mapped: by index
» Set associative: by index and search
» Fully associative: by search
What happens on a write access?
» Write-back or Write-through
Which block should be replaced?
» Random
» LRU (Least Recently Used)

412212007 ©se410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 33

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington

Not Explored (Yet?)

» Cache Coherency in multiprocessor systems
» Want each processor to have its own cache
» Fast local access
» No interference with/from other processors
» But: now what happens if more than one
processor accesses a cache line at the same
time?
» How do we keep multiple copies consistent?
» What about synchronization with main storage?

412212007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 35

CSE410 Sp07

13-9

