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Reading and References

» Reading
» Computer Organization and Design, Patterson and Hennessy

¢ Section 7.1 Introduction
¢ Section 7.2 The Basics of Caches
« Section 7.3 Measuring and Improving Cache Performance

» Reference
» Chapter 4, See MIPS Run, D. Sweetman
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The Quest for Speed - Memory

If all memory accesses (IF/lw/sw) accessed
main memory, programs would run 20 times
slower
And it’s getting worse

» processors speed up by 50% annually

» memory accesses speed up by 9% annually

» it’s becoming harder and harder to keep these
processors fed
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A Solution: Memory Hierarchy

» Keep copies of the active

. fast, small,
data in the small, fast, expensive
expensive storage storage

» Keep all data in the big,
slow, large,

slow, cheap storage

cheap storage
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Memory Hierarchy

What is a Cache?

« A cache allows for fast accesses to a subset of a larger

data store

* Your web browser’s cache gives you fast access to pages

you visited recently
» faster because it’s stored locally
» subset because the web won’t fit on your disk

» The memory cache gives the processor fast access to

memory that it used recently

» faster because it’s fancy and usually located on the CPU chip

» subset because the cache is smaller than main memory
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Memory | Fabrication | Access |Typ. Size| $/MB
Level Tech Time (ns) | (bytes) |(Circa?)
Registers | Registers <0.5 256 1000
L1 Cache SRAM 1 64K 100
L2 Cache SRAM 10 M 100
Memory DRAM 100 512M 100
Disk Magnetic 10M 100G 0.0035
Disk
Memory Hierarchy
Registers
CPU
L1 cache
L2 Cache
Main Memory
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COMPLEX
INSTRUCTION
SUPPOAT

SUPERSCALER
INTEGER
EXECUTION
UNITS
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Locality of reference

» Temporal locality - nearness in time

» Data being accessed now will probably be
accessed again soon

» Useful data tends to continue to be useful
« Spatial locality - nearness in address

» Data near the data being accessed now will
probably be needed soon

» Useful data is often accessed sequentially

Memory Access Patterns
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e Memory accesses « Memory accesses do
don’t usually look usually look like this
like this — hot variables

» random accesses — step through arrays
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Cache Terminology

* Hit and Miss

» the data item is in the cache or the data item is not in the
cache

» Hit rate and Miss rate
» the percentage of references that the data item is in the
cache or not in the cache
» Hit time and Miss time

» the time required to access data in the cache (cache access
time) and the time required to access data not in the cache
(memory access time)

Effective Access Time
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cache cache
hit rate miss rate
| |
teffective - (h)tcache + (1_h)tmemory
f
effective cache memory access

access time access time time

aka, Average Memory Access Time (AMAT)
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Cache Contents

» When do we put something in the cache?
» when it is used for the first time

* When do we overwrite something in the cache?

» when we need the space in the cache for some other
entry

» all of memory won’t fit on the CPU chip so not
every location in memory can be cached
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A small two-level hierarchy

8-word cache

116 = 1110100
120 = 1111000
124 = 1111100
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32-word memory (128 bytes)
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Fully Associative Cache

Direct Mapped Caches

* Inafully associative Address | Valid Value

cache, 0010100 Y | 0x00000001

» any memory word can 0000100 N | 0x09D91D11

be placed in any cache 0100100 Y | 0x00000410

line 0101100 Y | 0x00012D10

» each cache line stores an 0001100 N 0x00000005
address and a data value 1101100 YV | 0x0349A291

» accesses are slow (but 0100000 Y | 0x000123A8
R?_t i; slow as you might 1111100 N | 0x00000200

in
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 Fully associative caches are often too slow

 With direct mapped caches the address of the
item determines where in the cache to store it
» In our example, the lowest order two bits are the
byte offset within the word stored in the cache
» The next three bits of the address dictate the
location of the entry within the cache

» The remaining higher order bits record the rest of
the original address as a tag for this entry
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Address Tags

» Atag is a label for a cache entry indicating
where it came from
» The upper bits of the data item’s address

7 bit Address

1011101
Tag (2) Index (3) Byte Offset (2)
10 111 01
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Direct Mapped Cache

Cache Contents

Memory Cache

Address Tag Valid Value Index

1100000 11 Y 0x00000001 000, = O
1000100 10 N 0x09D91D11 001, = 1
0101000 01 Y 0x00000410 010, = 2
0001100 00 Y 0x00012D10 011, = 3
1010000 10 N 0x00000005 100, = 4
1110100 11 Y | 0x0349A291 101, = 5
00171000 00 Y 0x000123A8 _‘]_:I_O2 =6
10@00 10 N 0x00000200 111, = 7
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N-way Set Associative Caches

 Direct mapped caches cannot store more than one

address with the same index
« If two addresses collide, then you overwrite the

older entry

* 2-way associative caches can store two different

addresses with the same index
» 3-way, 4-way and 8-way set associative designs too

» Reduces misses due to conflicts
* Larger sets imply slower accesses
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2-way Set Associative Cache

Index Tag | Valid Value Tag | Valid Value

000 11 Y 0x00000001 00 Y 0x00000002
001 10 N 0x09D91D11 10 N 0x0000003B
010 01 Y 0x00000410 11 Y 0x000000CF
011 00 Y 0x00012D10 10 N 0x000000A2
100 10 N 0x00000005 11 N 0x00000333
101 = | 11 Y 0x0349A291 10 Y 0x00003333
110 00 Y 0x000123A8 01 Y 0x0000C002
111 10 N 0x00000200 10 N 0x00000005

The highlighted cache entry contains values for
addresses 10101xx, and 11101xx,.
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Associativity Spectrum

— =

Direct Mapped N-way Associative Fully Associative
Fast to access Slower to access Slow to access
Conflict Misses  Fewer Conflict Misses No Conflict Misses
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Spatial Locality

* Using the cache improves performance by
taking advantage of temporal locality

» When a word in memory is accessed it is loaded
into cache memory

» Itis then available quickly if it is needed again
soon

« This does nothing for spatial locality
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Memory Blocks

 Divide memory into blocks

* If any word in a block is accessed, then load
an entire block into the cache

Block 0 0x00000000-0x0000003F

Block 1 0x00000040-0x0000007F

Block 2 0x00000080-0x000000BF

Cache line for 16 word block size
tag | valid

Wo

wy

Wy | Ws

Wy

Ws

We

wy

Wg

Wg

Wio

Wy

Wi,

Wig

Wyg

Wis I
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Address Tags Revisited

» A cache block size > 1 word requires the address to
be divided differently

« Instead of a byte offset into a word, we need a byte
offset into the block

* Assume we have 10-bit addresses, 8 cache lines, and
4 words (16 bytes) per cache line block...

10 bit Address
0101100111
Tag (3) Index (3) Block Offset (4)
010 110 0111

CSE410 Sp07
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The Effects of Block Size

Reads vs. Writes

* Big blocks are good
» Fewer first time misses
» Exploits spatial locality
» Small blocks are good
» Don’t evict as much data when bringing in a new
entry
» More likely that all items in the block will turn out
to be useful

 Caching is essentially making a copy of the
data

* When you read, the copies still match when
you’re done

* When you write, the results must eventually
propagate to both copies

» Especially at the lowest level of the hierarchy,
which is in some sense the permanent copy
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Write-Through Caches

Write-Back Caches

» Write all updates to both cache and memory
» Advantages
» The cache and the memory are always consistent

» Evicting a cache line is cheap because no data
needs to be written out to memory at eviction

» Easy to implement
 Disadvantages

» Runs at memory speeds when writing (can use
write buffer to reduce this problem)

» Write the update to the cache only. Write to
memory only when cache block is evicted

» Advantage
» Runs at cache speed rather than memory speed
» Some writes never go all the way to memory
» When a whole block is written back, can use

high bandwidth transfer

 Disadvantage

» complexity required to maintain consistency
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Dirty bit

» When evicting a block from a write-back
cache, we could
» always write the block back to memory
» write it back only if we changed it

» Caches use a “dirty bit” to mark if a line
was changed
» the dirty bit is 0 when the block is loaded
» it is set to 1 if the block is modified

» when the line is evicted, it is written back only
if the dirty bitis 1

i-Cache and d-Cache
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 There usually are two separate caches for
instructions and data.
» Avoids structural hazards in pipelining

» The combined cache is twice as big but still has an
access time of a small cache

» Allows both caches to operate in parallel, for twice
the bandwidth
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Cache Line Replacement

» How do you decide which cache block to
replace?
* If the cache is direct-mapped, it’s easy
» only one slot per index
» Otherwise, common strategies:
» Random
» Least Recently Used (LRU)

LRU Implementations
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» LRU is very difficult to implement for high
degrees of associativity

 4-way approximation:
» 1 bit to indicate least recently used pair
» 1 bit per pair to indicate least recently used item in

this pair

» We will see this again at the operating system

level
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Multi-Level Caches

Summary: Classifying Caches

» Use each level of the memory hierarchy as a
cache over the next lowest level

* Inserting level 2 between levels 1 and 3
allows:

» level 1 to have a higher miss rate (so can be
smaller and cheaper)

» level 3 to have a larger access time (so can be
slower and cheaper)

» Where can a block be placed?
» Direct mapped, N-way Set or Fully associative
How is a block found?
» Direct mapped: by index
» Set associative: by index and search
» Fully associative: by search
What happens on a write access?
» Write-back or Write-through
Which block should be replaced?
» Random
» LRU (Least Recently Used)
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Not Explored (Yet?)

» Cache Coherency in multiprocessor systems
» Want each processor to have its own cache
» Fast local access
» No interference with/from other processors
» But: now what happens if more than one
processor accesses a cache line at the same
time?
» How do we keep multiple copies consistent?
» What about synchronization with main storage?
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