
CSE410 Sp07 13-1

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 1

Cache Memory

CSE 410, Spring 2007
Computer Systems

http://www.cs.washington.edu/410

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 2

Reading and References

• Reading
» Computer Organization and Design, Patterson and Hennessy

• Section 7.1 Introduction
• Section 7.2 The Basics of Caches
• Section 7.3 Measuring and Improving Cache Performance

• Reference
» Chapter 4, See MIPS Run, D. Sweetman

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 3

The Quest for Speed - Memory

• If all memory accesses (IF/lw/sw) accessed
main memory, programs would run 20 times
slower

• And it’s getting worse
» processors speed up by 50% annually
» memory accesses speed up by 9% annually
» it’s becoming harder and harder to keep these

processors fed

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 4

A Solution: Memory Hierarchy

• Keep copies of the active
data in the small, fast,
expensive storage

• Keep all data in the big,
slow, cheap storage

fast, small,
expensive
storage

slow, large,
cheap storage

CSE410 Sp07 13-2

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 5

Memory Hierarchy

10M

100

10

1

<0.5

Access
Time (ns)

Disk

Memory

L2 Cache

L1 Cache

Registers

Memory
Level

$/MB
(Circa ?)

Typ. Size
(bytes)

Fabrication
Tech

0.0035100GMagnetic
Disk

100512MDRAM

1001MSRAM

10064KSRAM

1000256Registers

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 6

What is a Cache?
• A cache allows for fast accesses to a subset of a larger

data store
• Your web browser’s cache gives you fast access to pages

you visited recently
» faster because it’s stored locally
» subset because the web won’t fit on your disk

• The memory cache gives the processor fast access to
memory that it used recently
» faster because it’s fancy and usually located on the CPU chip
» subset because the cache is smaller than main memory

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 7

Memory Hierarchy

CPU

Registers

L1 cache

L2 Cache

Main Memory

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 8

CSE410 Sp07 13-3

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 9

Locality of reference

• Temporal locality - nearness in time
» Data being accessed now will probably be

accessed again soon
» Useful data tends to continue to be useful

• Spatial locality - nearness in address
» Data near the data being accessed now will

probably be needed soon
» Useful data is often accessed sequentially

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 10

Memory Access Patterns

• Memory accesses
don’t usually look
like this
» random accesses

• Memory accesses do
usually look like this
– hot variables
– step through arrays

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 11

Cache Terminology

• Hit and Miss
» the data item is in the cache or the data item is not in the

cache
• Hit rate and Miss rate

» the percentage of references that the data item is in the
cache or not in the cache

• Hit time and Miss time
» the time required to access data in the cache (cache access

time) and the time required to access data not in the cache
(memory access time)

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 12

Effective Access Time

teffective = (h)tcache + (1-h)tmemory

effective
access time

memory access
time

cache
miss rate

cache
access time

cache
hit rate

aka, Average Memory Access Time (AMAT)

CSE410 Sp07 13-4

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 13

Cache Contents

• When do we put something in the cache?
» when it is used for the first time

• When do we overwrite something in the cache?
» when we need the space in the cache for some other

entry
» all of memory won’t fit on the CPU chip so not

every location in memory can be cached

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 14

A small two-level hierarchy

8-word cache

32-word memory (128 bytes)

0

=

0
0
0
0
0
0
0

4

=

0
0
0
0
1
0
0

8

=

0
0
0
1
0
0
0

1
1
6

=

1
1
1
0
1
0
0

1
2
0

=

1
1
1
1
0
0
0

1
2
4

=

1
1
1
1
1
0
0

1
2

=

0
0
0
1
1
0
0

1
6

=

0
0
1
0
0
0
0

2
0

=

0
0
1
0
1
0
0

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 15

Fully Associative Cache

0x00012D10Y0101100

0x00000005N0001100

0x0349A291Y1101100

0x000123A8Y0100000

0x00000200N1111100

0x00000410Y0100100

0x09D91D11N0000100

0x00000001Y0010100

ValueValidAddress• In a fully associative
cache,
» any memory word can

be placed in any cache
line

» each cache line stores an
address and a data value

» accesses are slow (but
not as slow as you might
think)

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 16

Direct Mapped Caches

• Fully associative caches are often too slow
• With direct mapped caches the address of the

item determines where in the cache to store it
» In our example, the lowest order two bits are the

byte offset within the word stored in the cache
» The next three bits of the address dictate the

location of the entry within the cache
» The remaining higher order bits record the rest of

the original address as a tag for this entry

CSE410 Sp07 13-5

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 17

Address Tags

• A tag is a label for a cache entry indicating
where it came from
» The upper bits of the data item’s address

1011101

7 bit Address

0111110

Byte Offset (2)Index (3)Tag (2)

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 18

Direct Mapped Cache

0x00012D10Y00
0x00000005N10
0x0349A291Y11
0x000123A8Y00
0x00000200N10

0x00000410Y01
0x09D91D11N10
0x00000001Y11

ValueValidTag

0112 = 3
1002 = 4
1012 = 5
1102 = 6
1112 = 7

0102 = 2
0012 = 1
0002 = 0

Cache
Index

0001100

1010000

1110100
0011000
1011100

0101000

1000100
1100000

Memory
Address

Cache Contents

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 19

N-way Set Associative Caches
• Direct mapped caches cannot store more than one

address with the same index
• If two addresses collide, then you overwrite the

older entry
• 2-way associative caches can store two different

addresses with the same index
» 3-way, 4-way and 8-way set associative designs too

• Reduces misses due to conflicts
• Larger sets imply slower accesses

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 20

0x00012D10Y00
0x00000005N10
0x0349A291Y11
0x000123A8Y00
0x00000200N10

0x00000410Y01
0x09D91D11N10
0x00000001Y11

ValueValidTag

0x000000A2N10
0x00000333N11
0x00003333Y10
0x0000C002Y01
0x00000005N10

0x000000CFY11
0x0000003BN10
0x00000002Y00

ValueValidTag

2-way Set Associative Cache

011
100

101
110
111

010
001
000
Index

The highlighted cache entry contains values for
addresses 10101xx2 and 11101xx2.

⇒

CSE410 Sp07 13-6

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 21

Associativity Spectrum

Direct Mapped
Fast to access

Conflict Misses

Fully Associative
Slow to access

No Conflict Misses

N-way Associative
Slower to access

Fewer Conflict Misses

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 22

Spatial Locality

• Using the cache improves performance by
taking advantage of temporal locality
» When a word in memory is accessed it is loaded

into cache memory
» It is then available quickly if it is needed again

soon
• This does nothing for spatial locality

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 23

Memory Blocks

• Divide memory into blocks
• If any word in a block is accessed, then load

an entire block into the cache

Block 0 0x00000000–0x0000003F

Block 1 0x00000040–0x0000007F

Block 2 0x00000080–0x000000BF

w13 w14tag valid w15w12w11w10w9w8w7w6w5w4w3w2w1w0

Cache line for 16 word block size

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 24

Address Tags Revisited
• A cache block size > 1 word requires the address to

be divided differently
• Instead of a byte offset into a word, we need a byte

offset into the block
• Assume we have 10-bit addresses, 8 cache lines, and

4 words (16 bytes) per cache line block…

0101100111

10 bit Address

0111110010

Block Offset (4)Index (3)Tag (3)

CSE410 Sp07 13-7

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 25

The Effects of Block Size
• Big blocks are good

» Fewer first time misses
» Exploits spatial locality

• Small blocks are good
» Don’t evict as much data when bringing in a new

entry
» More likely that all items in the block will turn out

to be useful

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 26

Reads vs. Writes

• Caching is essentially making a copy of the
data

• When you read, the copies still match when
you’re done

• When you write, the results must eventually
propagate to both copies
» Especially at the lowest level of the hierarchy,

which is in some sense the permanent copy

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 27

Write-Through Caches
• Write all updates to both cache and memory
• Advantages

» The cache and the memory are always consistent
» Evicting a cache line is cheap because no data

needs to be written out to memory at eviction
» Easy to implement

• Disadvantages
» Runs at memory speeds when writing (can use

write buffer to reduce this problem)

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 28

Write-Back Caches
• Write the update to the cache only. Write to

memory only when cache block is evicted
• Advantage

» Runs at cache speed rather than memory speed
» Some writes never go all the way to memory
» When a whole block is written back, can use

high bandwidth transfer
• Disadvantage

» complexity required to maintain consistency

CSE410 Sp07 13-8

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 29

Dirty bit
• When evicting a block from a write-back

cache, we could
» always write the block back to memory
» write it back only if we changed it

• Caches use a “dirty bit” to mark if a line
was changed
» the dirty bit is 0 when the block is loaded
» it is set to 1 if the block is modified
» when the line is evicted, it is written back only

if the dirty bit is 1
4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 30

i-Cache and d-Cache

• There usually are two separate caches for
instructions and data.
» Avoids structural hazards in pipelining
» The combined cache is twice as big but still has an

access time of a small cache
» Allows both caches to operate in parallel, for twice

the bandwidth

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 31

Cache Line Replacement

• How do you decide which cache block to
replace?

• If the cache is direct-mapped, it’s easy
» only one slot per index

• Otherwise, common strategies:
» Random
» Least Recently Used (LRU)

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 32

LRU Implementations
• LRU is very difficult to implement for high

degrees of associativity
• 4-way approximation:

» 1 bit to indicate least recently used pair
» 1 bit per pair to indicate least recently used item in

this pair
• We will see this again at the operating system

level

CSE410 Sp07 13-9

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 33

Multi-Level Caches
• Use each level of the memory hierarchy as a

cache over the next lowest level
• Inserting level 2 between levels 1 and 3

allows:
» level 1 to have a higher miss rate (so can be

smaller and cheaper)
» level 3 to have a larger access time (so can be

slower and cheaper)

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 34

Summary: Classifying Caches
• Where can a block be placed?

» Direct mapped, N-way Set or Fully associative
• How is a block found?

» Direct mapped: by index
» Set associative: by index and search
» Fully associative: by search

• What happens on a write access?
» Write-back or Write-through

• Which block should be replaced?
» Random
» LRU (Least Recently Used)

4/22/2007 cse410-13-cache ©2006-07 Perkins, DW Johnson and University of Washington 35

Not Explored (Yet?)

• Cache Coherency in multiprocessor systems
• Want each processor to have its own cache

» Fast local access
» No interference with/from other processors

• But: now what happens if more than one
processor accesses a cache line at the same
time?
» How do we keep multiple copies consistent?
» What about synchronization with main storage?

