
31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 1

File Systems

CSE 410, Spring 2006
Computer Systems

http://www.cs.washington.edu/education/courses/410/06sp/

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 2

Readings and References

• Reading
» Chapter 11, Chapter 12 through 12.6, Operating System Concepts,

Silberschatz, Galvin, and Gagne

• Other References
» Chapter 10, Inside Microsoft Windows 2000, Third Edition, Solomon

and Russinovich

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 3

Files

• A user-level abstraction for “a collection of bytes in
(non-volatile) storage”

• Files have:
» Name
» Type (implicit or explicit)
» Location - which device, where on that device
» Size (and possibly maximum size)
» Protection - who may read and write this?
» Time, date, and user identification

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 4

Disk File Structure
• Disk block is fixed-size contiguous group of disk sectors
• Think of a file as simply a sequence of disk blocks

» may not be contiguous
• Directory is a file that points to other files or directories
• File system issues

» how many sectors per block?
» how do you keep track of which blocks a file is using?
» how do you keep track of which blocks are free?
» most files are small, but most I/O is to big files. Must

optimize both

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 5

File Operations

• File creation
» make room for the file
» enter the new file into the directory

• Writing a file
» specify the file and the data to write to the file
» OS keeps track of your location in the file
» successive writes are placed one after the other in

the file

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 6

More File Operations

• Reading a file
» specify the file and the buffer into which the data should be

read
» OS keeps track of your location in the file
» Location pointer is often shared between read and write

operations

• Repositioning within a file
» Changes the location pointer
» Often called “seeking”
» No actual I/O

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 7

Yet More File Operations

• Deleting a file
» Find the directory entry and delete it
» Mark the space used by the file as free
» Don’t actually “erase” the file

• Truncating a file
» Throw away all the data in the file
» Keep the attribute information

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 8

Opening and Closing Files

• The above six operations are sufficient
• But we also have the notion of the open file
• The open system call tells the OS that the specified

file will be used by several operations
» user need not specify name each time
» OS need not search directories each time
» Location pointers, etc. need only be maintained for open

files

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 9

Volumes and Directories

• A volume is a logical disk
» there may be more than one volume

per physical disk
» there may be more than one physical

disk per volume

• The directory lists all of the files in
the volume

Directory

Files

Volume

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 10

Single-Level Directories

• In a single-level
directory structure,
the directory lists
all files and their
offsets

• Like a table of
contents

notes410 5
spring06 12
todo 55
ideas 59
notes410

spring06

todo
ideas

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 11

Two-Level Directories

• Single-level directories suffer from name
collision
» If you and I both name a file “prog1.c” then one

file will overwrite the other
• Split up the space into top-level directories for

each user
• Keep a directory for each user’s files, and a

directory of the user directories

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 12

Tree-Structured Directories

• Let directories contain subdirectories
• Arrange files in a tree
• To name a file, specify a list of directories

from the top down, plus the name of the file
itself
» This is called a path name

• A path beginning at the root is an absolute
path; if part of the path is implied, it’s a
relative path

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 13

The Current Directory

• Set the current directory with system call
• All future open() calls interpret path names

relative to the current directory
» Saves on directory lookups

• Initial current directory is often set at login
time, to the user’s home directory

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 14

File Protection

• Protection allows the owner of a file or
directory to define who may do what to that
file or directory
» The who is restricted by user or group

• usually use Access Control Lists (ACLs)
» The what is restricted by type of access:

• read, write, execute

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 15

Disk Block Allocation

• The basic unit of storage on a disk is a block
» One or more disk sectors (which are usually 512 bytes)

• Each file is stored in one or more blocks
• For simplicity, blocks are not split between files;

leftover space at the end of a block is wasted
» internal fragmentation

• Allocation strategy: When creating or enlarging a file,
which disk block(s) should be allocated?

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 16

Contiguous Allocation

• In contiguous allocation, a file gets blocks b,
b+1, b+2, ...

• Directory entry stores starting location, length
• Two blocks with sequential numbers are very

likely to be in the same track, so no head
movement is required

• What’s the problem?

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 17

Contiguous Allocation

• Allocating blocks on one track or adjacent tracks
» makes accessing the file fast

• Random access is easy because offsets are easy to
calculate

• Directory stores location of first sector and length

Pain to make files bigger.

Often, must copy whole files.

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 18

Linked allocation

• In linked allocation, a file gets a linked list of
disk blocks

• Directory entry stores starting location
• Each block contains data and a pointer to the

next block

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 19

Linked Allocation

• Each block contains a pointer to the next block in the
file (the last block is NULL)

• Directory stores location of first sector
• Advantages

» easy to grow files

• Disadvantages
» poor random access
» pay seek penalty many times
» link overhead

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 20

Indexed allocation

• In indexed allocation, the file gets a list of disk
blocks

• An index block contains the block list

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 21

Indexed Allocation

• An array lists where each block of the file is
stored

• Try to allocate blocks contiguously
• But can allocate blocks anywhere
• Issues

» Where is this array list stored?
» Is the array fixed size?

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 22

Unix Inodes

• In Unix this list of blocks is stored in an inode
» for each file a directory stores the file name and an inode

• Some entries point directly to a file block
» these are sufficient for small files (up to 1KB)

• Some entries point to a list of block entries
» these are sufficient for medium sized files (up to 256KB)

• Some entries point to lists of lists of block entries
» these are sufficient for large files (up to 64MB)

• Some entries point to lists of lists of lists of block
entries
» these are sufficient for humongous files (up to 16GB)

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 23

Inode Example

direct

singly indirect

doubly indirect

triply-indirect

data

data

data

data

data

data

data

data

data

data

data

data

data

data

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 24

Free Space

• How do you find free disk blocks?
• Bitmap: One long string of bits represents the

disk, one bit per block
• Linked list: each free block points to the next

one (slow to search for runs of blocks)
• Grouping: list free blocks in the first free block
• Counting: keep a list of streaks of free blocks

and their lengths

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 25

Sectors per Block

• What if there are many sectors per block
» a file might fit in a single block (faster access)
» internal fragmentation

• What if there is only one sector per block
» increases access time because files are spread

over multiple blocks

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 26

Win2K File System
• The root directory of a volume is stored at a fixed location

so you always know where to start
• The MFT (master file table) stores information about each

file
• Each entry is 1KB and stores

» name, attribute, security info, data
» a small file’s data fits in the MFT entry (don’t even need to allocate

another block)
» or data can be list of block ranges (similar to inodes)

• A directory is like any other file
» it stores the MFT numbers of the files or subdirectories in that

directory

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 27

Making Disks Faster

• What if a program reads just one value from a
file and does some processing?

• What if a program writes results to a file in the
same way?

• Ways to make disks faster
» caching
» minimize seeks

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 28

Disk Buffers

• Most files are read sequentially
• When one block is read, the disk reads the

blocks that follow it because they will likely be
read too

• These blocks are stored in a memory buffer on
the disk

• Reads to the next blocks don’t have to pay
seek and rotational delay

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 29

File Caches

• File accesses exhibit locality just like everything else
• Therefore cache frequently-used file blocks in main

memory
» modern file systems wouldn't work without this

• It's interesting that we use memory to store
frequently-used disk blocks and disk to store
infrequently used memory pages

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 30

File Cache
• A portion of memory is devoted to

storing frequently used files
• The amount of memory changes based

on the workload
» if more files are being accessed then use

more memory

• Virtual pages that are evicted from
physical memory often go to the file
cache before the page file
» gives a virtual page another chance
» doesn't require a copy because file cache can

be stored anywhere in memory

Memory

Virtual memory
pages

File cache
Frequently used
file blocks

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 31

Disk Layout

• Prevent fragmentation
» allocate files to contiguous blocks

• Put directories and their files (and the files'
inodes) near each other
» improves locality, reduce seek time

• Put commonly used
directories in center track

Directory on same track
as files in the directory

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 32

Disk Scheduling

• The disk has requests to read tracks
» 0, 10, 4, 7 (0 is on the outside)

• If the disk head is at track 1, how should we
order these reads to minimize how far the disk
head moves?

31-May-2006 cse410-28-files © 2006 DW Johnson and University of Washington 33

Disk Scheduling

• FIFO--First In First Out
» lots of back and forth seeking

• SSTF--Shortest Seek Time First
» pick the request closest to the disk head
» starvation is an issue

• SCAN, C-SCAN
» also known as an elevator algorithm
» take the closest request in the direction of travel
» head moves back and forth from edge to edge

