
15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 1

Scheduling

CSE 410, Spring 2006
Computer Systems

http://www.cs.washington.edu/education/courses/410/06sp/

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 2

Readings and References

• Reading
» Operating System Concepts

• Chapter 6, Sections 6.1 through 6.5

• Chapter 6, Section 6.7.2, Windows scheduling example

• Other References
» Chapter 6, Section “Thread Scheduling”, Inside Microsoft

Windows 2000, Third Edition, Solomon and Russinovich

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 3

Process State

• A process can be in one of several states
» new, ready, running, waiting, terminated

• The OS keeps track of process state by
maintaining a queue of PCBs for each state

• The ready queue contains PCBs of processes
that are waiting to be assigned to the CPU

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 4

Windows 2000 Thread States

7 - Unknown
6 - Transition
5 - Wait (for something to complete)
4 - Terminated
3 - Standby (on-deck circle)
2 - Running (at bat)
1 - Ready (eligible to be selected)
0 - Initialized

ThreadStatesX1.msc

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 5

The Scheduling Problem

• Need to share the CPU between multiple
processes in the ready queue
» OS decides which process gets the CPU next
» Once a process is selected, OS does some work to

get the process running on the CPU

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 6

How Scheduling Works

• The short-term scheduler is responsible for
choosing a process from the ready queue

• The scheduling algorithm implemented by this
module determines how process selection is
done

• The scheduler hands the selected process off to
the dispatcher which gives the process control
of the CPU

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 7

Scheduling Decisions - When?

• Scheduling decisions are always made:
» when a task is terminated
» when a task switches from running to waiting

• Scheduling decisions are also made when an
interrupt occurs in a preemptive system

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 8

Scheduling Decisions - Why?

• Maximize throughput and resource utilization
» Need to overlap CPU and I/O activities.

• Minimize response time, waiting time and
turnaround time

• Share CPU in a “fair” way
• Conflicting constraints

» constantly need to make tradeoffs

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 9

Scheduling Decisions – How?

• Non-preemptive scheduling
» The task decides when it stops
» The scheduler must wait for a running task to

voluntarily relinquish the CPU
» Used in the past, now only in real-time systems

• Preemptive scheduling
» OS can force a running task to give up control of

the CPU and pick another task to run
» Used by all major OS's today

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 10

Non-preemptive scheduling
• Non-preemptive scheduling

» The scheduler waits for a running task to
voluntarily relinquish the CPU (task either
terminates or blocks)

• Simplifies kernel
• Simplifies hardware
• But it also makes it difficult to manage the

system’s performance effectively with
arbitrary processes running

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 11

Preemptive scheduling

• Preemptive scheduling
» The OS can force a running task to give up control

of the CPU, allowing the scheduler to pick another
task

» OS gains control on a regular interrupt schedule
• A little more overhead
• But allows much better control of the overall

system performance when running an arbitrary
selection of processes

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 12

CPU and I/O Bursts

• Typical process execution pattern:
» use the CPU for a while (CPU burst)
» then do some I/O operations (I/O burst)

• CPU bound processes have long CPU bursts
and perform I/O operations infrequently

• I/O bound processes spend most of their time
doing I/O and have short CPU bursts

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 13

First Come First Served

• Scheduler selects the process at the head of the
ready queue; typically non-preemptive

• Example: 3 processes arrive at the ready queue in
the following order:
P1 (CPU burst = 240 ms), P2 (CPU burst = 30 ms),
P3 (CPU burst = 30 ms)

+ Simple to implement
– Average waiting time can be large

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 14

Round Robin

• FCFS + preemptive scheduling
• Ready queue is a circular queue
• Each process gets the CPU for a time quantum

(a time slice), typically 10 - 100 ms
• A task runs until it uses up its time slice or

blocks

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 15

Round Robin Examples

• Short jobs don’t get stuck behind long jobs

• Average response time for jobs of same length is bad

FCFS:

RR:

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 16

Round Robin Pros and Cons

+ Works well for short jobs; typically used in
timesharing systems

- Higher overhead due to frequent context
switches

- Increases average waiting time, especially if
CPU bursts are the same length and need
more than one time quantum

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 17

Priority Scheduling

• Select the process with the highest priority
• Priority is based on some attribute of the

process (e.g., memory requirements, owner
of process, etc.)

• Starvation problem
» low priority jobs may wait indefinitely
» can prevent starvation by aging (increase

process priority as it waits)

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 18

Priority Inversion

• Three tasks with priorities: AHI, BMED, CLOW
• Suppose CLOW locks resource that AHI needs

» CLOW prevents AHI from running
» BMED prevents CLOW from running
» AHI can’t run until BMED finishes and CLOW unlocks

• This is known as priority inversion
• Solution: increase priority of a process holding a lock to

the max priority of a process waiting on the lock
» CLOW -> CHI until it releases the lock

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 19

Shortest Job First

• Special case of priority scheduling
» priority = expected length of CPU burst

• Scheduler chooses the process with the
shortest remaining time to completion
» think about waiting at the copy machine

• Example: What’s the average waiting time?

30 30 240

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 20

Shortest Job First Pros and Cons

+ It’s the best you can do to minimize average
response time
» can prove the algorithm is optimal

- Difficult to predict the future
» Use past behavior of the task to predict length

of its next CPU burst
- Unfair-- possible starvation

» many short jobs can stall long jobs

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 21

Multi-level Queues

• Maintain multiple ready queues based on
task “type” (e.g., system, interactive, batch)

• Each task is assigned to a particular queue
» Each queue has a priority
» May use a different scheduling algorithm in

each queue
» There are policies implicit in these choices

• Also need to schedule between queues

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 22

Multi-level Feedback Queues

• Adaptive algorithm: task priority changes
based on past behavior

• Task starts with high priority
» because it’s probably a short job

• Decrease priority of tasks that hog the CPU
(CPU-bound jobs)

• Increase priority of tasks that don’t use the
CPU much (I/O-bound jobs)

