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Readings and References

» Reading

» Operating System Concepts
Chapter 6, Sections 6.1 through 6.5
Chapter 6, Section 6.7.2, Windows scheduling example

e Other References

» Chapter 6, Section “Thread Scheduling”, Inside Microsoft
Windows 2000, Third Edition, Solomon and Russinovich
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Process State

» A process can be in one of several states

» new, ready, running, waiting, terminated

» The OS keeps track of process state by
maintaining a queue of PCBs for each state

» The ready queue contains PCBs of processes
that are waiting to be assigned to the CPU

Windows 2000 Thread States
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7 - Unknown

6 - Transition

5 - Wait (for something to complete)
4 - Terminated

3 - Standby (on-deck circle)

2 - Running (at bat)

1 - Ready (eligible to be selected)

0 - Initialized

ThreadStatesX 1.msc
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The Scheduling Problem

» Need to share the CPU between multiple
processes in the ready queue
» OS decides which process gets the CPU next

» Once a process is selected, OS does some work to
get the process running on the CPU

How Scheduling Works
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» The short-term scheduler is responsible for
choosing a process from the ready queue

* The scheduling algorithm implemented by this
module determines how process selection is
done

* The scheduler hands the selected process off to
the dispatcher which gives the process control
of the CPU
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Scheduling Decisions - When?

» Scheduling decisions are always made:
» when a task is terminated
» when a task switches from running to waiting

* Scheduling decisions are also made when an
interrupt occurs in a preemptive system

Scheduling Decisions - Why?
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Maximize throughput and resource utilization
» Need to overlap CPU and I/O activities.

* Minimize response time, waiting time and
turnaround time

Share CPU in a “fair” way

Conflicting constraints
» constantly need to make tradeoffs
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Scheduling Decisions — How?

» Non-preemptive scheduling
» The task decides when it stops

» The scheduler must wait for a running task to
voluntarily relinquish the CPU

» Used in the past, now only in real-time systems
» Preemptive scheduling

» OS can force a running task to give up control of
the CPU and pick another task to run

» Used by all major OS's today
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Non-preemptive scheduling

» Non-preemptive scheduling

» The scheduler waits for a running task to
voluntarily relinquish the CPU (task either
terminates or blocks)

Simplifies kernel

Simplifies hardware

But it also makes it difficult to manage the
system’s performance effectively with
arbitrary processes running
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Preemptive scheduling

* Preemptive scheduling

» The OS can force a running task to give up control
of the CPU, allowing the scheduler to pick another
task

» OS gains control on a regular interrupt schedule

» A little more overhead

» But allows much better control of the overall
system performance when running an arbitrary
selection of processes

CPU and I/O Bursts
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» Typical process execution pattern:
» use the CPU for a while (CPU burst)
» then do some I/O operations (I/O burst)

» CPU bound processes have long CPU bursts
and perform I/O operations infrequently

* 1/O bound processes spend most of their time
doing I/O and have short CPU bursts
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First Come First Served

Round Robin

» Scheduler selects the process at the head of the
ready queue; typically non-preemptive
« Example: 3 processes arrive at the ready queue in

the following order:
P2 ( CPU burst = 30 ms),
P3 ( CPU burst = 30 ms)

+ Simple to implement
— Average waiting time can be large

FCFS + preemptive scheduling
Ready queue is a circular queue

Each process gets the CPU for a time quantum
(a time slice), typically 10 - 100 ms

A task runs until it uses up its time slice or
blocks
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Round Robin Examples

Round Robin Pros and Cons

* Short jobs don’t get stuck behind long jobs
EEE

» Average response time for jobs of same length is bad
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+ Works well for short jobs; typically used in

timesharing systems

Higher overhead due to frequent context
switches

Increases average waiting time, especially if
CPU bursts are the same length and need
more than one time quantum
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Priority Scheduling

* Select the process with the highest priority
* Priority is based on some attribute of the
process (€.g., memory requirements, owner
of process, etc.)
* Starvation problem
» low priority jobs may wait indefinitely

» can prevent starvation by aging (increase
process priority as it waits)
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Priority Inversion

Three tasks with priorities: Ay, B, 1, CLow
Suppose C, oy locks resource that A, needs
» C,ow prevents A,y from running
» B, prevents C, , from running

» Ay can’t run until B, , finishes and C, ., unlocks

This is known as priority inversion

Solution: increase priority of a process holding a lock to
the max priority of a process waiting on the lock
» C|ow -> Cyy until it releases the lock
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Shortest Job First

 Special case of priority scheduling
» priority = expected length of CPU burst

» Scheduler chooses the process with the
shortest remaining time to completion
» think about waiting at the copy machine

« Example: What’s the average waiting time?

30 30 240
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Shortest Job First Pros and Cons

+ It’s the best you can do to minimize average
response time
» can prove the algorithm is optimal
- Difficult to predict the future

» Use past behavior of the task to predict length
of its next CPU burst

- Unfair-- possible starvation

» many short jobs can stall long jobs

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 20




Multi-level Queues Multi-level Feedback Queues

* Maintain multiple ready queues based on Adaptive algorithm: task priority changes

task “type” (e.g., system, interactive, batch) based on past behavior
 Each task is assigned to a particular queue * Task starts with high priority
» Each queue has a priority » because it’s probably a short job
» May use a different scheduling algorithm in « Decrease priority of tasks that hog the CPU

each queue (CPU-bound jobs)

» There are policies implicit in these choices

Increase priority of tasks that don’t use the
 Also need to schedule between queues CPU much (I/O-bound jobs)
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