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Scheduling

CSE 410, Spring 2006
Computer Systems

http://www.cs.washington.edu/education/courses/410/06sp/
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Readings and References

• Reading 
» Operating System Concepts

• Chapter 6, Sections 6.1 through 6.5

• Chapter 6, Section 6.7.2, Windows scheduling example

• Other References
» Chapter 6, Section “Thread Scheduling”, Inside Microsoft 

Windows 2000, Third Edition, Solomon and Russinovich
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Process State

• A process can be in one of several states
» new, ready, running, waiting, terminated

• The OS keeps track of process state by 
maintaining a queue of PCBs for each state

• The ready queue contains PCBs of processes 
that are waiting to be assigned to the CPU
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Windows 2000 Thread States

7 - Unknown
6 - Transition
5 - Wait (for something to complete)
4 - Terminated
3 - Standby (on-deck circle)
2 - Running (at bat)
1 - Ready (eligible to be selected)
0 - Initialized

ThreadStatesX1.msc
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The Scheduling Problem

• Need to share the CPU between multiple 
processes in the ready queue
» OS decides which process gets the CPU next
» Once a process is selected, OS does some work to 

get the process running on the CPU
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How Scheduling Works

• The short-term scheduler is responsible for 
choosing a process from the ready queue

• The scheduling algorithm implemented by this 
module determines how process selection is 
done

• The scheduler hands the selected process off to 
the dispatcher which gives the process control 
of the CPU
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Scheduling Decisions - When?

• Scheduling decisions are always made:
» when a task is terminated
» when a task switches from running to waiting

• Scheduling decisions are also made when an 
interrupt occurs in a preemptive system
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Scheduling Decisions - Why?

• Maximize throughput and resource utilization
» Need to overlap CPU and I/O activities.

• Minimize response time, waiting time and 
turnaround time

• Share CPU in a “fair” way
• Conflicting constraints

» constantly need to make tradeoffs
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Scheduling Decisions – How?

• Non-preemptive scheduling
» The task decides when it stops
» The scheduler must wait for a running task to 

voluntarily relinquish the CPU
» Used in the past, now only in real-time systems

• Preemptive scheduling
» OS can force a running task to give up control of 

the CPU and pick another task to run
» Used by all major OS's today
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Non-preemptive scheduling
• Non-preemptive scheduling

» The scheduler waits for a running task to 
voluntarily relinquish the CPU (task either 
terminates or blocks)

• Simplifies kernel
• Simplifies hardware
• But it also makes it difficult to manage the 

system’s performance effectively with 
arbitrary processes running
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Preemptive scheduling

• Preemptive scheduling 
» The OS can force a running task to give up control 

of the CPU, allowing the scheduler to pick another 
task

» OS gains control on a regular interrupt schedule
• A little more overhead
• But allows much better control of the overall 

system performance when running an arbitrary 
selection of processes
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CPU and I/O Bursts

• Typical process execution pattern: 
» use the CPU for a while (CPU burst)
» then do some I/O operations (I/O burst)

• CPU bound processes have long CPU bursts 
and perform I/O operations infrequently

• I/O bound processes spend most of their time 
doing I/O and have short CPU bursts
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First Come First Served

• Scheduler selects the process at the head of the 
ready queue; typically non-preemptive

• Example:  3 processes arrive at the ready queue in 
the following order: 
P1 ( CPU burst = 240 ms), P2 ( CPU burst = 30 ms), 
P3 ( CPU burst = 30 ms)

+ Simple to implement
– Average waiting time can be large
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Round Robin

• FCFS + preemptive scheduling
• Ready queue is a circular queue
• Each process gets the CPU for a time quantum 

(a time slice), typically 10 - 100 ms
• A task runs until it uses up its time slice or 

blocks

15-May-2006 cse410-21-scheduling © 2006 DW Johnson and University of Washington 15

Round Robin Examples

• Short jobs don’t get stuck behind long jobs

• Average response time for jobs of same length is bad

FCFS:

RR:
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Round Robin Pros and Cons

+ Works well for short jobs; typically used in 
timesharing systems

- Higher overhead due to frequent context 
switches

- Increases average waiting time, especially if 
CPU bursts are the same length and need 
more than one time quantum
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Priority Scheduling

• Select the process with the highest priority
• Priority is based on some attribute of the 

process (e.g., memory requirements, owner 
of process, etc.)

• Starvation problem
» low priority jobs may wait indefinitely
» can prevent starvation by aging (increase 

process priority as it waits)
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Priority Inversion

• Three tasks with priorities: AHI, BMED, CLOW
• Suppose CLOW locks resource that AHI needs

» CLOW prevents AHI from running
» BMED prevents CLOW from running
» AHI can’t run until BMED finishes and CLOW unlocks

• This is known as priority inversion
• Solution: increase priority of a process holding a lock to 

the max priority of a process waiting on the lock
» CLOW -> CHI until it releases the lock
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Shortest Job First

• Special case of priority scheduling
» priority = expected length of CPU burst

• Scheduler chooses the process with the 
shortest remaining time to completion
» think about waiting at the copy machine

• Example: What’s the average waiting time?

30 30 240
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Shortest Job First Pros and Cons

+ It’s the best you can do to minimize average 
response time
» can prove the algorithm is optimal

- Difficult to predict the future
» Use past behavior of the task to predict length 

of its next CPU burst
- Unfair-- possible starvation

» many short jobs can stall long jobs
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Multi-level Queues

• Maintain multiple ready queues based on 
task “type” (e.g., system, interactive, batch)

• Each task is assigned to a particular queue
» Each queue has a priority 
» May use a different scheduling algorithm in 

each queue
» There are policies implicit in these choices

• Also need to schedule between queues
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Multi-level Feedback Queues

• Adaptive algorithm: task priority changes 
based on past behavior

• Task starts with high priority
» because it’s probably a short job

• Decrease priority of tasks that hog the CPU 
(CPU-bound jobs)

• Increase priority of tasks that don’t use the 
CPU much (I/O-bound jobs)


