Pipelining — Part 2

CSE 410, Spring 2006
Computer Systems

http://www.cs.washington.edu/education/courses/410/06sp/

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

Reading and References

» Computer Organization and Design, Patterson
and Hennessy
» Section 6.4 Data Hazards and Forwarding
» Section 6.5 Data Hazards and Stalls
» Section 6.6 Branch Hazards

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

Control Hazards

* Branch instructions cause control hazards (aka
branch hazards) because we don’t know which

instruction to fetch next
we don’t know
until here

bne $s0, $sl1, skip IF ID EX |[MEM| WB
add $s4, $s3, $s0

EX |MEM| WB

skip:

sub $s4, $s3, $s0 do we fetch the
add or the sub?

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

Idea: Stall for branch hazard

» Stall until we know which instruction to
execute next

» would introduce a 4-cycle pipeline bubble in the
basic pipeline

bne $s0, $sl, next| IF | ID | EX |MEM WB
1F | 1D | EX |MEM| WB |

sub $s4, $s3, $s0 stall

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

Idea: Move Branch Logic to ID

* Move the branch hardware to ID stage

» Hardware to compare two registers is simpler than
hardware to add them

« We still have to stall for one cycle

* And we can’t move the branch up any more

Idea: Reorder Instructions

» Reordering instructions is a common
technique for avoiding pipeline stalls

« Static reordering
» programmer, compiler and assembler do this

* Dynamic reordering
» modern processors can see several instructions
» they execute any that have no dependency

bne $s0, $s1, next [1 | 0 | Bx |MEM| W » this is known as out-of-order execution and is
sub $s4, $s3, $0 stall| TF | 10 | EX |MEM]| WB | complicated to implement but effective
26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington 26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington
Branch Delay Slot Branch Delay Slot execution

A branch now causes a stall of one cycle
* Try to execute an instruction instead of nop

» The compiler (assembler, programmer) must
find an instruction to fill the branch delay slot
» 50% of the instructions are useful
» 50% are nops which don’t do anything

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

* Instruction in the branch delay slot always
executes, no matter what the branch does
» it follows the branch in memory
» but it “piggybacks” and is always executed
» no bubble at all

{bne $s0, $sl, next | IF | ID | EX |MEM| WB

add $s3,$s3,1 IF ID EX |MEM | WB
[jb $s4, $s3, $s0 IF ID EX | MEM| WB

actual instruction sequence after reordering by assembler

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

beq with delay slot jal with delay slot
.set noreorder move $a0, $s3
.set nomacro move $al, $s0
beqg $v0, $zero, $L4 .set noreorder
move $sl,$s4 .set nomacro
.set macro jal QuickSort
.set reorder move Sa2,$s4
.set macro
.set reorder
26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington 9 26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington 10
Idea: Predict the branch action Squash

» For example, assume the branch is not taken
» Execute the next instruction in memory
 If we guessed right, we’re golden
» no bubble at all
 If we guessed wrong, then we lose a little
» squash the partially completed instructions.
» This is called flushing the pipeline
» Wasted time, but would have stalled anyway

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

» Must be able to completely suppress the
effects of guessing wrong

» An instruction cannot write to memory or a
register until we’re sure it should execute

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington 12

Assume Branch Not Taken

Branch not taken

bne $s0,$zero,Done

addi $t0,$t0,1

addi $t0,$t0,3
Done: move $tl,$t0

bnel IF | D | EX |MEM| WBl

addilIF | ID | EX |MEM| WBl

addil IF | ID | EX |MEM|WB|

Branch taken

bne| IF | ID | EX |MEM| WB |
addi [s=] SQUASH

movelIFlIDlEXlM‘EMlW’Bl

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

Static Branch Prediction

Most backwards branch are taken (80%)
» they are part of loops

Half of forward branches are taken (50%)

» 1f statements

« Common static branch prediction scheme is
» predict backwards branches are taken
» predict forward branches are not taken

This does okay (70-80%), but not great

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

Dynamic Branch Prediction

* Most programs are pretty regular

» Most of the time only execute a small subset of
the program code

» Same branch instructions execute repeatedly
* A particular branch instruction is usually:

» taken if it was taken last time

» not taken if it was not taken last time

* If we keep a history of each branch
instruction, then we can predict much better

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

Dynamic Branch Prediction

* The CPU records what happened last time
we executed the branch at this address
» Generally record last two results
» simple 4-state transition table makes prediction

* Dynamic branch prediction is 92-98%
accurate

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

2-bit prediction scheme

taken

predlct taken

taken

not taken

predlct taken

not taken

not taken

predict: not taken

predict: not taken

10

11
not taken

Implementing Branch Prediction

 There is not room to store every branch
instruction address

» so last few bits of the instruction address are used
to index into a table

» some instructions collide like a hash table

» but that’s okay, it just means we’re wrong once in
a while

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington 18

Branch Prediction Table

Address state? Predict correct? | new state

0x00401234 11

not taken yes 11
0x004F0238 00 taken no 01
0x0040223C 10 not taken no 00

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington

Importance of Branch Prediction

» Branches occur very frequently
» every five instructions on average
* Modern processors execute up to 4 instructions
per cycle
» so a branch occurs every 2 cycles
» Newer pipelines are getting longer
» 8,9,11,13 cycles
» error penalty is 3-5 cycles instead of 1 cycle
» hard to fill branch delay slots

26-Apr-2006 cse410-11-pipelining-b © 2006 DW Johnson and University of Washington 20

