
CSE 410 Sp 06 - Midterm Review Sheet

 Page 1 of 3

Review sheet for midterm exam

The information on this sheet is intended to help you identify the key points that you
should be comfortable knowing. It is not a substitute for the last month of lectures and
homework assignments, and so it is possible that there will be questions on the exam that
are not answered by the material on this review sheet.

The mid-term will be given in class, Monday, May 1. No books, no notes, no electronic
devices. You will be provided with a copy of the green card from the book.

Computer Instructions

Reduced Instruction Set Computer. Reduced compared to Complex – simple memory
access model, regular instruction format, single instruction width, etc.

Registers. Register names and usage convention for each register. Which registers
should not be used at all (at, k0, k1), which registers can be changed without saving and
restoring them (a0-a3, t0-t9, v0-v1), which register is a constant ($zero), and which
registers must be saved and restored if a procedure wants to use them (s0-s7, gp, sp, fp,
ra). Instructions: move.

Load and Store Instructions. Memory address, what it means that memory is byte-
addressable, byte, half-word, word, double word, and alignment in memory. Load and
store word, load and store byte, difference between signed and unsigned loads, difference
between aligned and unaligned loads/stores. Basic addressing mode: offset + base
register value. Big-endian, little-endian storage convention. Immediate mode values
(constants embedded in the instructions) and the limitations on their magnitude (limited
by the size of the 16-bit field). Instructions: la, li, lb, lbu, lw, sb, sw.

Branch instructions. Be able to read and interpret the various branch instructions.
Limitations on the distance that a branch can go. PC-relative branch addressing.
Understand what the slt comparison instructions do and why they are useful for the
branch instructions. Know that the branch pseudo-ops expand to include the comparison
for you if needed and so most of the time you don’t need to actually write an explicit
comparison. Instructions: b, beq, bne, bgt, bge, blt, ble, beqz, bnez, bgtz, bgez, bltz, blez.

Jump instructions. Understand that the jump and link instruction is the key to calling
procedures, that the jump register instruction is the means for getting back, and how they
interact through the $ra register. Plain jumps can go further than any branch due to the
larger offset that they contain. Instructions: j, jal, jalr, jr.

Arithmetic and Logical instructions. Recognize that a trailing "i" indicates an
"immediate value (a constant)", a trailing "u" indicates "unsigned (no overflow exception
generated)". Be able to read a table of existing register values and an instruction to
operate on some of those registers, and write down the result of the instruction.

CSE 410 Sp 06 - Midterm Review Sheet

 Page 2 of 3

Understand what happens when you do a "shift logical" to the bits in a register (bits that
are shifted out are dropped, bits that are shifted in are zero, the rest of the bits are in a
new position). Understand AND and OR operations, and what it means to use a mask
with an AND instruction. Instructions: add, sub, div, mul, and, or, sll, sllv, srl, srlv.

Writing assembly code. The .data directive tells the assembler to put data in the heap,
.text tells it to put instructions in the program code section. Directives .word, .byte,
.asciiz store data in memory. A label in the code or data sections is a symbolic reference
to a location in memory. Know how to write comments that add meaning for the next
programmer and are not just a translation of the instructions into words. Assembly code
is the set of instructions that you write, machine code is the binary values that those
instructions get translated into.

Procedures

Understand how program memory is laid out (program, heap, stack) and how the heap
and the stack grow towards each other. Identify the steps in calling another procedure
(set up parameters, transfer control, acquire needed storage, do the task, make result
available, release storage, return) and understand how each step is accomplished.
Registers for parameters, stack space for parameters, adjusting stack pointer to control
stack usage, stack space for saving and restoring register values that must be preserved,
$v0 to return a value. Given a small segment at the start of a procedure, draw the
contents of the stack frame.

Leaf procedure, non-leaf procedure, calling tree diagram. Given a short sequence of
code, draw the calling tree and label the arguments of the called procedures.

Numbers and Formats

Character data. It is common to store characters using 8-bit values that fit in a byte.
Strings of such characters can be terminated by a null-byte (a zero value) or they can be
counted with a separate variable holding the number of characters in the string. Other
encoding formats such as Unicode use more bits per character and thus can encode larger
numbers of characters. Understand generally how Unicode encoding accomplishes the
larger range. Counted and null-terminated strings.

Binary, hex, and decimal number bases. Total number of values in a field that is n bits
wide is 2n. Maximum value is 2n-1. Starting from a binary, hex, or decimal value less
than 1610, convert it to the equivalent value in binary (0 to 11112), to hex (0 to F16) or to
decimal (0 to 1510). Convert any length binary number to the equivalent hex value, and
hex to binary. Know that the following value is the largest that will fit in eight bits:

1111 11112 = FF16 = 25510.
Understand that shifting a number one bit position to the right divides by 2, shifting one
position to the left multiplies by 2. See the Number Base Charts in lecture 3 for

CSE 410 Sp 06 - Midterm Review Sheet

 Page 3 of 3

information about why the values are related the way they are. Hex numbers are often
written with a leading "0x" to indicate that they are base 16.

Signed Integer Numbers. Understand 2's complement notation. The sign bit is the high
order bit (most significant bit, bit 31 in a 32-bit quantity), it is 0 for positive numbers, 1
for negative numbers. Convert from negative to positive representation or vice versa
using "complement and add 1."

Floating Point. Understand the various fields of a floating point number and how they
are used.

Pipelining

The five stages of the basic MIPS pipeline are IF, ID, EX, MEM, WB. Instruction Fetch,
Instruction Decode, Execute, Memory, Write Back. The instruction set was designed to
be pipelined: The instructions are all 4 bytes, which simplifies IF. Instructions have
common format (op code location, register locations), that simplifies ID. Only load and
store instructions access memory, which simplifies MEM. Most memory operations are
aligned, that simplifies MEM. Branch instructions are a problem for pipelines because
they change the order of instruction fetches, which may have already started by the time
the branch decision has been made. A strategy for coping with this is the "branch delay
slot", in which an instruction is always executed after the branch but before the
instruction at the new destination address. Another strategy is "static branch prediction"
in which the programmer or the compiler makes a guess about which will happen more
frequently. "Dynamic branch prediction" keeps records with a simple state table and
builds a prediction based on program behavior. The cost of a mistake is the need to flush
the instructions that are already in the pipeline, which slows it down.

