CSE 410:	Memory Management		
Computer	• Meiro beginning a new multiple lecture tonic		
Systems	We're beginning a new multiple-lecture topic _ goals of memory management		
	convenient abstraction for programming		
Spring 2005	isolation between processes		
	allocate scarce memory resources between competing processes, maximize performance (minimize overhead)		
Memory	– mechanisms		
	physical vs. virtual address spaces		
Management	page table management, segmentation policies page replacement policies		
	page replacement policies		
Hank			
Levy levy@cs.			
washingt on.edu			
Allen			
Center 596	06/06/2005 © 2005 Hank Levy 2		
Virtual Memory from 10,000 feet	In the beginning		
The basic abstraction that the OS provides for memory	First, there was batch programming		
management is virtual memory (VM)	 programs used physical addresses directly 		
 VM enables programs to execute without requiring their entire address space to be resident in physical memory 	 OS loads job, runs it, unloads it 		
program can also execute on machines with less RAM than it "needs"	Then came multiprogramming		
 many programs don't need all of their code or data at once (or ever) 	 need multiple processes in memory at once 		
 e.g., branches they never take, or data they never read/write 	to overlap I/O and computation		
 no need to allocate memory for it, OS should adjust amount allocated based on its run-time behavior 	 memory requirements: protection: restrict which addresses processes can use, so 		
	they can't stomp on each other		
 virtual memory isolates processes from each other 	 fast translation: memory lookups must be fast, in spite of protection scheme 		
one process cannot name addresses visible to others; each process			
	 fast context switching: when swap between jobs, updating 		
 one process cannot name addresses visible to others; each process has its own isolated address space 			

	Managing TLBs (2	2)
 when OS ch 	ure TLB and page tables anges protection bits in a PT e PTE if it is in the TLB	
 remember, e need to inva this is a b 	s on a process context s each process typically has its lidate all the entries in TLB! ig part of why process context so k of a hardware fix to this?	own page tables (flush TLB)
cached PTE – choosing a v	B misses, and a new PT must be evicted victim PTE is called the "TLB d in hardware, usually simple	replacement policy"
06/06/2005	© 2005 Hank Levy	21