From Source to Execution

CSE 410, Spring 2005
Computer Systems

http://www.cs.washington.edu/410

Starting a Program

» Two phases from source code to execution
* Build time

» compiler creates assembly code

» assembler creates machine code

» linker creates an executable
* Run time

» loader moves the executable into memory and
starts the program

Build Time

* You’re experts on compiling from source to
assembly and hand crafted assembly

» Two parts to translating from assembly to
machine language:

» Instruction encoding (including translating
pseudoinstructions)

» Translating labels to addresses
 Label translations go in the symbol table

Symbol Table

* Symbols are names of global variables or labels
(including procedure entry points)

* Symbol table associates symbols with their
addresses in the object file

* This allows files compiled separately to be linked

LabelA: 0x01031£ff0
bigArray 0x10006000




Modular Program Design

» Small projects might use only one file

» Any time any one line changes, recompile and
reassemble the whole thing

« For larger projects, recompilation time and
complexity management is significant

* Solution: split project into modules
» compile and assemble modules separately
» link the object files

The Compiler + Assembler

 Translate source files to object files
» Object files

» Contain machine instructions (1’s & 0’s)
» Bookkeeping information
* Procedures and variables the object file defines
* Procedures and variables the source files use but are
undefined (unresolved references)
* Debugging information associating machine
instructions with lines of source code

The Linker

» The linker’s job is to “stitch together” the
object files:
1. Place the data modules in memory space
2. Determine the addresses of data and labels
3. Match up references between modules

» Creates an executable file

Determining Addresses

* Some addresses change during memory layout
* Modules were compiled in isolation
Absolute addresses must be relocated

Object file keeps track of instructions that use
absolute addresses

text )-\
text




Resolving References

For example, in a word processing program,
an input module calls a spell check module

Module address i1s unresolved at compile time

The linker matches unresolved symbols to
locations in other modules at link time

In SPIM, “main” is resolved when your
program is loaded

Linker Example

— main.o — area.o
code: main: code:
A=area (5.0) Area:return PI*r*r
static data: static data:
PI = 3.1415
defined symbols: defined symbols:
main, PI Area
undefined symbols: undefined symbols:
Area PI
main.exe
header

code: main:A=area (5.0)
Area:return PI*r*r

static data: PI = 3.1415

defined symbols: main, PI,

EN
ALTd

Libraries

Some code is used so often, it is bundled into
libraries for common access

Libraries contain most of the code you use but
didn’t write: e.g., printf()

Library code is (often) merged with yours at
link time

main.exe

The Executable

* End result of compiling, assembling, and
linking: the executable
» Header, listing the lengths of the other segments
» Text segment
» Static data segment

» Potentially other segments, depending on
architecture & OS conventions




Run Time

* When a program is started ...

» Some dynamic linking may occur
* some symbols aren’t defined until run time
* Windows’ dlls (dynamic link library)

» The segments are loaded into memory
» The OS transfers control to the program and it
runs
» We’ll learn a lot more about this during the OS
part of the course




