
Characters, Bits and Addresses

CSE 410, Spring 2005

Computer Systems

http://www.cs.washington.edu/410

Beyond Numbers

• Most computers today use 8-bit bytes to

represent characters

• How many characters can you represent in an

8-bit byte?

» 256

• How many characters are needed to represent

all the languages in the world?

» a gazillion, approximately

char

• American Standard Code for Information

Interchange (ASCII)

» published in 1968

» defines 7-bit character codes ...

» which means only the first 128 characters

» after that, it’s all “extensions” and “code pages”

• ISO 8859-x

» codify the extensions to 8 bits (256 characters)

ISO 8859-x

• Each “language” defines the extended chars

» Latin1 (West European) , Latin2 (East European),

Latin3 (South European), Latin4 (North

European), Cyrillic, Arabic, Greek, Hebrew,

Latin5 (Turkish), Latin6 (Nordic)

» http://www.microsoft.com/globaldev/reference/iso.mspx

• How many languages are there?

» a gazillion, approximately

Unicode

• Universal character encoding standard

» http://www.unicode.org/

• 16 bits should cover just about everything ...

» “original goal was to use a single 16-bit encoding

that provides code points for more than 65,000

characters”

» the Java char type is a 16-bit character

• How many characters are needed? ...

Unicode does a million

unicode scalar value:

 a number N from 0 to 10FFFF16 (1,114,11110)

Some character URLs

• ANSI X3.4 (ASCII)

» http://czyborra.com/charsets/iso646.html

• ISO 8859 (International extensions)

» http://czyborra.com/charsets/iso8859.html

• Unicode

» http://www.unicode.org/

» http://www.unicode.org/iuc/iuc10/x-utf8.html

czyborra.com seems to be offline right now ...

Moving bytes

• A byte can contain an 8-bit character

• A byte can contain really small numbers

 0 to 25510 or -12810 to 12710

• Sign extension desired effect:

» sign bit not extended for characters

» sign bit extended for numbers

• Unsigned: lbu $reg, a($reg)

» the byte is 0-extended into the register

Loading bytes

0000 0000

•! Signed: ! ! lb $reg, a($reg)

»! bit 7 is extended through bit 31

0000 0000 0000 0000 xxxx xxxx

0000 0000 0000 0000 0000 0000 0xxx xxxx

1111 1111 1111 1111 1111 1111 1xxx xxxx

• No sign bit considerations

» the right most byte in the register is jammed

into the byte address given
» sb $t0, 2($sp)

Storing bytes

0000 0000 0000 00000000 0000xxxx xxxx0x7FFFEFFC

0123

0000 0000 0000 0000 0000 0000 xxxx xxxx$t0

$sp

Storing strings

• Counted strings (for example Pascal strings)

» byte str[0] holds length: max 255 char

• Counted strings (for example Java strings)

» int variable holds length: max 2B char

• Terminated strings (for example C strings)

» no length variable, must count: max n/a

strcpy example

char *strcpy(char *dst, const char *src) {

 char *s = dst;

 while ((*dst++ = *src++) != '\0')

 ;

 return s;

}

Compared to example in the book:

•! prototype matches libc

•! pointers, not arrays

•! better loop

strcpy compiled

strcpy:

 move $v1,$a0 # remember initial dst

loop:

 lbu $v0,0($a1) # load a byte

 sb $v0,0($a0) # store it

 sll $v0,$v0,24 # toss the extra bytes

 addu $a1,$a1,1 # src++

 addu $a0,$a0,1 # dst++

 bne $v0,$zero,loop # loop if not done

 move $v0,$v1 # return initial dst

 j $ra # return

Manipulating the bits

• Shift Logical

» sll, srl, sllv, srlv - shift bits in word, 0-extend

» use these to isolate bits in a word

» shift amount in instruction or in register

• Bit by bit

» and, andi - clear bits in destination

» or, ori - set bits in destination

Shift to the left, shift to the right, push down, pop up, byte, byte, byte!

Example: bit manipulation

0000 0000 0000 0000 0000 1111 1010 1111
1010 1111 0000 0000 0000 0000 0000 0000

1010 1111 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 1010

0000 0000 0000 0000 0000 0000 0000 1010
0000 0000 0000 0000 0000 0001 0000 1010

sll $t1,$t1,24

srl $t1,$t1,28

ori $t1,$t1,0x100

• Example in the book on page 229 is a

typical application of bit fields

• But, note poor choice of field locations

» the received byte is not aligned

» the byte must be shifted before it can be used

• To: EE designers of interfaces

» please consider alignment when selecting

fields

Example: C bit fields

... unused ... received byte e r

Multiply and Divide

• There is a separate integer multiply unit

• Use pseudo-instructions to access
mul $t0,$t1,$t2 # t0 = t1*t2

div $t0,$t1,$t2 # t0 = t1/t2

• These are relatively slow

» multiply 5-12 clock cycles

» divide 35-80 clock cycles

Addressing modes

• Register jr $ra

• Offset + Register lw $t0,0($sp)

• Immediate addi $t0,17

• PC relative bnez $t0,loop

• Pseudodirect jal proc

Register only

• Use the 32 bits of the specified register as the

desired address

• Can specify anywhere in the program address

space, without limitation
• jr $ra

» return to caller after procedure completes

Offset + Register

• Specify 16-bit signed offset to add to the base

register

• Transfer (lw, sw) base register is specified
» lw $t0,4($sp)

» sw $t0,40($gp)

Immediate

• The 16-bit field holds the constant value

0x34080001 ori $8, $0, 1 ; 4: li $t0,1

0x3c01ffff lui $1, -1 ; 5: li $t0,-1

0x3428ffff ori $8, $1, -1

0x3408ffff ori $8, $0, -1 ; 6: li $t0,0xFFFF

0x3c010001 lui $1, 1 ; 7: li $t0,0x1FFFF

0x3428ffff ori $8, $1, -1

0x3c015555 lui $1, 21845 ; 8: li $t0,0x5555AAAA

0x3428aaaa ori $8, $1, -21846

0x3c010040 lui $1, 64 [main] ; 9: la $t0,main

0x34280020 ori $8, $1, 32 [main]

PC relative

• Branch (beq, bne) base register is PC
» beq $t0,$t1,skip

• The 16-bit value stored in the instruction is

considered to be a word offset

» multiplied by 4 before adding to PC

» can branch over ± 32 K instruction range

Pseudodirect

• The specified offset is 26 bits long

» Considered to be a word offset

» multiplied by 4 before use

• The top 4 bits of the PC are concatenated with

the new 28 bit offset to give a 32-bit address

• Can jump within 256 MB segment

