
Procedures

CSE 410, Spring 2005

Computer Systems

http://www.cs.washington.edu/education/courses/410/05sp/

Instructions and Data flow

main
memory

functional units

program counter
 increments by 4

registers

instructions and
data

instructions
and data

32 bits wide
32 in number

implement instructions

reserved (4 MB)
0000 0000

003F FFFF

0040 0000

0FFF FFFF

1000 0000
1000 FFFF

program (252 MB)

Not to

Scale!
 global data (64 KB)

7FFF EFFF stack (grows down)

heap (grows up)1001 0000

~1792 MB

reserved (4KB)7FFF FFFF

Layout of program memory Why use procedures?

• So far, our program is just one long run of
instructions

• We can do a lot this way, but the program
rapidly gets too large to handle easily

• Procedures allow the programmer to organize
the code into logical units

What does a procedure do for us?

• A procedure provides a well defined and
reusable interface to a particular capability

» entry, exit, parameters clearly identified

• Reduces the level of detail the programmer
needs to know to accomplish a task

• The internals of a function can be ignored

» messy details can be hidden from innocent eyes

» internals can change without affecting caller

How do you use a procedure?

1. set up parameters

2. transfer to procedure

3. acquire storage resources

4. do the desired function

5. make result available to caller

6. return storage resources

7. return to point of call

Calling conventions

• The details of how you implement the steps
for using a procedure are governed by the
calling conventions being used

• There is much variation in conventions

» which causes much programmer pain

• Understand the calling conventions of the
system you are writing for

» o32, n32, n64, P&H, cse410, ...

1. Set up parameters

• The registers are one obvious place to put
parameters for a procedure to read

» very fast and easily referenced

• Many procedures have 4 or less arguments

» $a0, $a1, $a2, $a3 are used for arguments

• … but some procedures have more

» we don’t want to use up all the registers

» so we use memory to store the rest

The Stack

• Stack pointer ($sp) points to the “top” value
on the stack (ie, the lowest address in use)

• There are no “push” or “pop” instructions

» we adjust the stack pointer directly

• stack grows downward towards zero

» subu $sp, $sp, xx : make room for more data

» addu $sp, $sp, xx : release space on the stack

» note that both subu and addu become addiu

Dynamic storage on the stack

0x7fffedf8
0x7fffedfc
0x7fffee00

0x7fffedf4
0x7fffedf0
0x7fffedec
0x7fffede8
0x7fffede4

0($sp)
4($sp)
8($sp)

$sp

main:
 subu $sp,$sp,8
 ...

0($sp)
4($sp)
8($sp)

12($sp)
16($sp)

0x7fffedf8 $sp 0x7fffedf0

0x7fffee0412($sp) 20($sp)

towards 0

 ...
 jal main

Layout of stack frame

towards 0

argument build area
(if needed)

saved registers
(if needed)

local variables
(if needed)

argument build area
(if needed)

procA:
 subu $sp,$sp,xx
 ...

$sp (on entry)

$sp (after subu)

st
ac

k
 f

ra
m

e

Argument build area

• Some calling conventions require that caller
reserve stack space for all arguments

» 16 bytes (4 words) left empty to mirror $a0-$a3

• Other calling conventions require that caller
reserve stack space only for arguments that do
not fit in $a0 - $a3

» so argument build area is only present if some
arguments didn’t fit in 4 registers

Agreement

• A procedure and all of the programs that call it
must agree on the calling convention

• This is one reason why changing the calling
convention for system libraries is a big deal

• We will use

» caller reserves stack space for all arguments

» 16 bytes (4 words) left empty to mirror $a0-$a3

2. Transfer to procedure

0x7fffedf8
0x7fffedfc
0x7fffee00

0x7fffedf4
0x7fffedf0
0x7fffedec
0x7fffede8
0x7fffede4

0($sp)
4($sp)
8($sp)

$sp

main:
 subu $sp,$sp,8
 ...

0($sp)
4($sp)
8($sp)

12($sp)
16($sp)

0x7fffedf8 $sp 0x7fffedf0

0x7fffee0412($sp) 20($sp)

towards 0

 ...
 jal main

Jump and link

• Jump

» can take you anywhere within the currently active
256 MB segment

• Link

» store return address in $ra

» note: this overwrites current value of $ra

3. Acquire storage resources

towards 0

argument build area
(if needed)

saved registers
(if needed)

local variables
(if needed)

argument build area
(if needed)

procA:
 subu $sp,$sp,40
 sw $ra,32($sp)
 sw $s0,28($sp)

$sp (on entry)

$sp (after subu)

st
ac

k
 f

ra
m

e

3a. Saved registers

• There is only one set of registers

» If called procedure unexpectedly overwrites them,
caller will be surprised and distressed

• Another agreement

» called procedure can change $a0-$a3, $v0-
$v1, $t0-$t9 without restoring original values

» called procedure must save and restore value of
any other register it wants to use

0

1

2-3

4-7

8-15, 24, 25

16-23

26,27

28

29

30

31

zero

at
v0,
v1

a0-a3

t0-t9

s0-s7

k0,
k1
gp

sp

fp or s8

ra

always returns 0

reserved for use as assembler temporary

values returned by procedures

first few procedure arguments

temps - can use without saving

temps - must save before using

reserved for kernel use - may change at any time

global pointer

stack pointer

frame pointer

return address from procedure

number name usage

Register numbers and names

3b. Local variables

• If the called procedure needs to store values in
memory while it is working, space must be
reserved on the stack for them

• Debugging note

» compiler can often optimize so that all variables
fit in registers and are never stored in memory

» so a memory dump may not contain all values

» use switches to turn off optimization (but …)

3c. Argument build area

• Our convention is

» caller reserves stack space for all arguments

» 16 bytes (4 words) left empty to mirror $a0-$a3

• If your procedure does more than one call to
other procedures, then ...

» the argument build area must be large enough for
the largest set of arguments

Using the stack pointer

• Adjust it once on entry, once on exit

» Initial adjustment should include all the space you
will need in this procedure

• Remember that a word is 4 bytes

» so expect to see references like 8($sp), 20($sp)

• Keep stack pointer double word aligned

» adjust by multiples of 8

4. Do the desired function

• You have saved the values of the registers that
must be preserved across the call

• The arguments are in $a0 - $a3 or on the stack

• The stack pointer points to the end of your
stack frame

• Let ‘er rip

5. Make result available to caller

• Registers $v0 and $v1 are available for this

• Most procedures put a 32-bit value in $v0

• Returning the address of a variable?

» be very careful!

» your portion of the stack is invalid as soon as you
return

» the object must be allocated in ancestor’s part of
stack or globally allocated

6. Return storage resources

towards 0

argument build area
(if needed)

saved registers
(if needed)

local variables
(if needed)

argument build area
(if needed)

 lw $ra,32($sp)
 lw $s0,28($sp)
 addu $sp,$sp,40
 jr $ra

$sp (after addu)

$sp (while executing)

st
ac

k
 f

ra
m

e

7. Return to point of call

• Jump through register

• The address of the instruction following the
jump and link was put in $ra when we were
called (the “link” in jump and link)

• We have carefully preserved $ra while the
procedure was executing

• So, “jr $ra” takes us right back to caller

CSE 410 Calling Conventions

• Argument build area

» caller reserves stack space for all arguments

» 16 bytes (4 words) left empty to mirror $a0-$a3

• Called procedure adjusts stack pointer once on
entry, once on exit, in units of 8 bytes

• Registers

» not required to save and restore $t0-$t9, $a0-$a3

» must save and restore $s0-$s8, $ra if changed

» function results returned in $v0, $v1

