
Testing and Branching

CSE 410, Spring 2005

Computer Systems

http://www.cs.washington.edu/education/courses/410/05sp/

goto considered harmful

• “Oh what a tangled web we weave, When first 
we practice to deceive!”

»  Sir Walter Scott 

• Branching in assembly language can turn your 
program into a rat’s nest that cannot be 
debugged

• Keep control flow simple and logical

• Use comments describing the overall logic

yes

no

?

...

...

...

...

A change in the 
program’s flow of 

control that depends 
on some condition

Conditional Branch Branch instructions

• Branch instructions are I-format instructions

» op code field

» two register fields

» 16-bit offset field

• Simplest branches check for equality
» beq $t0, $t1, address

» bne $t0, $t1, address



if (i==j) then a=b;

• Assume all values are in registers

• Note that the test is inverted! 

# $t0=i, $t1=j, $s0=a, $s1=b

 

  bne $t0, $t1, skip

  move $s0, $s1

skip:

while (s[i]==k) i = i+j;

# $s0=addr(s), $v1=i, $a0=k, $a1=j

loop:

 sll     $v0,$v1,2 # v0 = 4*i

 addu    $v0,$s0,$v0 # v0 = 
addr(s[i])

 lw      $v0,0($v0) # v0 = s[i]

 addu    $v1,$v1,$a1 # i = i+j

 beq     $v0,$a0,loop # loop if equal

 subu    $v1,$v1,$a1 # i = i-j

 for (i=0; i<10; i++) s[i] = i;

# $s0=addr(s), $t1=i 

move     $t1,$zero  # i = 0

loop:

 sll     $t0,$t1,2  # t0 = i*4

 addu    $t0,$s0,$t0 # t0 = addr(s[i])

 sw      $t1,0($t0)  # s[i] = i

 addu    $t1,$t1,1  # i++

 slt     $t0,$t1,10  # if (i<10) $t0=1

 bnez    $t0,loop  # loop if (i<10)

How do we encode the destination?

• Calculating the destination address

» 4*(the 16-bit offset value)

» is added to the Program Counter (PC)

• The offset is a word offset in this case

• The base register is always the PC, so we 
don’t need to specify it in the instruction 

• Covers a range of 216 words (64 KW)



Comparison instructions

• For comparisons other than equality
» slt : set less than

» sltu : set less than unsigned

» slti : set less than constant value

» sltiu : set less than unsigned constant

• set t0 to 1 if t1<t2
slt $t0, $t1, $t2

Pseudo-instructions

• The assembler is your friend and will build 
instruction sequences for you

• Original code:
 bge $a0,$t1,end # if a0>=t1 skip

• Actual instructions:
 slt $at,$a0,$t1  # if a0<t1 
at=true

 beq $at,$0,end  # skip if 
at==false

Jump Instructions

• Jump instructions provide longer range than 
branch instructions

• 26-bit word offset in J-format instructions

» j  : jump

» jal : jump and link (store return address)

• 32-bit address in register jumps

» jr : jump through register

» jalr : jump through register and link

J-format fields

• The word offset value is multiplied by 4 to 
create a byte offset

» the result is 28 bits wide

• Then concatenated with top 4 bits of PC to 
make a 32 bit destination address

op code word offset

6 bits 26 bits



Important Jumps

• Jump and link (jal)

» call procedure and store return address in $ra

• Jump through register (jr)

» return to caller using the address in $ra

• We will talk about procedure calls in 
excruciating detail next lecture


