
Computer Instructions

CSE 410, Spring 2005

Computer Systems

http://www.cs.washington.edu/education/courses/410/05sp/

A very simple organization

main
memory

functional units

program counter

registers

Instructions in main memory

• Instructions are stored in main memory

» each byte in memory has a number (an address)

• Program counter (PC) points to the next 

instruction

» All MIPS instructions are 4 bytes long, and so 

instruction addresses are always multiples of 4

• Program addresses are 32 bits long

» 232 = 4,294,967,296 = 4 GigaBytes (GB)

Instructions in memory

0

4

8

12

16

20

... ...

...

...

...

instruction
addresses

instruction value

instruction value



Some common storage units

byte 8

half-word

word

double word

16

32

64

# 
bits

unit

Note that a byte is 8 bits on almost all machines.  
The definition of word is less uniform (4 and 8 bytes are common today).

A nibble is 4 bits (half a byte!)

Alignment

• An object in memory is “aligned” when its 

address is a multiple of its size

• Byte: always aligned 

• Halfword: address is multiple of 2

• Word: address is multiple of 4

• Double word: address is multiple of 8

• Alignment simplifies load/store hardware

System organization so far

main
memory

functional units

program counter
   increments by 4

registers

instructions and
data

32-bit
instructions

MIPS Registers

• 32 bits wide 

» 32 bits is 4 bytes

» same as a word in memory

» signed values from -231 to +231-1

» unsigned values from 0 to 232-1

• easy to access and manipulate

» 32 registers (not related to being 32 bits wide)

» on chip, so very fast to access



Register addresses

• 32 general purpose registers

• how many bits does it take to identify a 

register?

» 5 bits, because 25 = 32

• 32 registers is a compromise selection

» more would require more bits to identify

» fewer would be harder to use efficiently

0

1

2-3

4-7

8-15, 24, 25

16-23

26,27

28

29

30

31

zero

at
v0, 
v1

a0-a3

t0-t9

s0-s7

k0, 
k1
gp

sp

fp or s8

ra

always returns 0

reserved for use as assembler temporary

values returned by procedures

first few procedure arguments

temps - can use without saving

temps - must save before using

reserved for kernel use - may change at any time

global pointer

stack pointer

frame pointer

return address from procedure

number name usage

Register numbers and names

How are registers used?

• Many instructions use 3 registers

» 2 source registers

» 1 destination register

• For example
» add $t1, $a0, $t0

• add a0 and t0 and put result in t1

» add $t1,$zero,$a0

• move contents of a0 to t1 (t1 =  0 + a0)

R-format instructions: 3 registers

• 32 bits available in the instruction

• 15 bits for the three 5-bit register numbers

• The remaining 17 bits are available for 

specifying the instruction 

» 6-bit op code - basic instruction identifier

» 5-bit shift amount

» 6-bit function code



R-format fields

op code source 1 source 2 dest shamt function

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

• some common R-format instructions

» arithmetic: add, sub, mult, div

» logical: and, or, sll, srl

» comparison: slt (set on less than)

» jump through register: jr

Bits are just bits

• The bits mean whatever the designer says they 

mean when the ISA is defined

• How many possible 3-register instructions are 

there?

» 217 = 131,072

» includes all values of op code, shamt, function

• As the ISA develops over the years, the 

encoding tends to become less logical

main
memory

functional units

program counter
   increments by 4

registers

instructions and
data

32-bit
instructions

32 bits wide
32 in number

implement instructions

System organization again Transfer from memory to register

• Load instructions
» word:  lw  rt, address

» half word: ! lh  rt, address
! ! ! lhu rt, address 

» byte: ! lb  rt, address
! ! ! lbu rt, address

• signed load => sign bit is extended into the 

upper bits of destination register

• unsigned load => 0 in upper bits of register



Transfer from register to memory

• Store instructions

» word:  sw  rt, address

» half word: sh  rt, address

» byte:  sb  rt, address

The “address” term

• There is one basic addressing mode:

offset + base register value

• Offset is 16 bits (± 32 KB)

• Load word pointed to by s0, add t1, store
lw  $t0,0($s0)

add $t0,$t0,$t1

sw  $t0,0($s0)

I-format fields

• The contents of the base register and the 

offset value are added together to generate 

the address for the memory reference

• Can also use the 16 bits to specify an 

immediate value, rather than an address

op code base reg src/dest offset or immediate value

6 bits 5 bits 5 bits 16 bits

Instructions and Data flow

main
memory

functional units

program counter
   increments by 4

registers

instructions and
data

instructions 
and data

32 bits wide
32 in number

implement instructions



The eye of the beholder

• Bit patterns have no inherent meaning

• A 32-bit word can be seen as 

» a signed integer (± 2 Billion)

» an unsigned integer or address pointer (0 to 4B)

» a single precision floating point number

» four 1-byte characters

» an instruction

Big-endian, little-endian

• A 32-bit word in memory is 4 bytes long

• but which byte is which address?

• Consider the 32-bit number 0x01234567

» four bytes: 01, 23, 45, 67

» most significant bits are 0x01

» least significant bits are 0x67

Data in memory- big endian

0

4

8

12

... ...

...

...

...

0 1 2 3 byte offsets

01 23 45 67

Big endian - most significant bits are in byte 0 of the word

byte 
#

contents

7 67

6 45

5 23

4 01

Data in memory- little endian

0

4

8

12

... ...

...

...

...

3 2 1 0 byte offsets

01 23 45 67

Little endian - least significant bits are in byte 0 of the word

byte 
#

contents

7 01

6 23

5 45

4 67


