Computer Instructions

CSE 410, Spring 2005
Computer Systems

http://www.cs.washington.edu/education/courses/410/05sp/

A very simple organization

main
memory

program counter

registers

functional units

Instructions in main memory

* Instructions are stored in main memory
» each byte in memory has a number (an address)
» Program counter (PC) points to the next
instruction

» All MIPS instructions are 4 bytes long, and so
instruction addresses are always multiples of 4

* Program addresses are 32 bits long
» 232=4294,967,296 = 4 GigaBytes (GB)

Instructions in memory

instruction value

20

instruction 16
addresses 12
8

4

0

T , T
instruction value

Some common storage units Alignment

Note that a byte is 8 bits on almost all machines.
The definition of word is less uniform (4 and 8 bytes are common today).

An object in memory is “aligned” when its

address 1s a multiple of its size
A nibble is 4 bits (half a byte!)

Byte: always aligned

bits

byte 8 []
half-word 16]

word 32 | | | | |
double word 64

unit

Halfword: address is multiple of 2

Word: address is multiple of 4

Double word: address is multiple of 8
Alignment simplifies load/store hardware

System organization so far MIPS Registers

» 32 bits wide

instructions and

data » 32 bits is 4 bytes
program counter » same as a word in memory
. increments by 4 » signed values from -23! to +231-1
main _bi . .
S registers » unsigned values from 0 to 232-1
memory instructions .
— * easy to access and manipulate
unctional units
» 32 registers (not related to being 32 bits wide)

» on chip, so very fast to access

Register addresses

* 32 general purpose registers
* how many bits does it take to identify a
register?
» 5 bits, because 2° = 32
* 32 registers is a compromise selection
» more would require more bits to identify
» fewer would be harder to use efficiently

Register numbers and names

number name usage
0 zero always returns 0
1 at reserved for use as assembler temporary
2-3 X: ! values returned by procedures
4-7 a0-a3 first few procedure arguments
8-15, 24, 25 t0-t9 temps - can use without saving
16-23 s0-s7 temps - must save before using
26,27 t? ! reserved for kernel use - may change at any time
28 gp global pointer
29 sp stack pointer
30 fp or s8 frame pointer
31 ra return address from procedure

How are registers used?

* Many instructions use 3 registers
» 2 source registers
» 1 destination register
» For example
» add $tl, $a0, $tO
* add a0 and t0 and put result in t1
» add $tl,$zero, $al
* move contents of a0 to t1 (t1 = 0 + a0)

R-format instructions: 3 registers

32 bits available in the instruction
* 15 bits for the three 5-bit register numbers
» The remaining 17 bits are available for

specifying the instruction

» 6-bit op code - basic instruction identifier
» 5-bit shift amount

» 6-bit function code

R-format fields Bits are just bits

» The bits mean whatever the designer says they
mean when the ISA is defined

op code |source 1 | source 2| dest | shamt |function

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

* How many possible 3-register instructions are
there?
» 217=131,072
» includes all values of op code, shamt, function

» As the ISA develops over the years, the
encoding tends to become less logical

* some common R-format instructions
» arithmetic: add, sub, mult, div
» logical: and, or, sll, srl
» comparison: slt (set on less than)
» jump through register: jr

System organization again Transfer from memory to register

» [oad instructions

instructions and

data » word: lw rt, address
program counter » half word: lh rt, address
u
increments by 4 lhu rtr address
main 32-bit - » byte: lb rt, address
memory :.nst;uct:l.ons reglsters lbu rt, address

« signed load => sign bit is extended into the

functional units . >)
upper bits of destination register

 unsigned load => 0 in upper bits of register

Transfer from register to memory

» Store instructions

» word: sw rt, address
» half word: sh rt, address
» byte: sb rt, address

The “address” term

 There is one basic addressing mode:
offset + base register value

 Offset is 16 bits (= 32 KB)
» Load word pointed to by s0, add t1, store

1w $t0,0($s0)
add $t0,5$t0, 5t
swW $t0,0($s0)

[-format fields

‘ op code |base reg|src/dest| offset or immediate value ‘

6 bits 5 bits 5 bits 16 bits

» The contents of the base register and the
offset value are added together to generate
the address for the memory reference

 Can also use the 16 bits to specify an
immediate value, rather than an address

Instructions and Data flow

instructions and
data

program counter

increments by 4

main instructions registers 32 bits wide
memory 32 in number

functional units
implement instructions

The eye of the beholder

* Bit patterns have no inherent meaning

» A 32-bit word can be seen as
» a signed integer (+ 2 Billion)
» an unsigned integer or address pointer (0 to 4B)
» a single precision floating point number

~

» four 1-byte characters
» an instruction

Big-endian, little-endian

» A 32-bit word in memory is 4 bytes long

 but which byte is which address?

 Consider the 32-bit number 0x01234567
» four bytes: 01, 23, 45, 67

» most significant bits are 0x01
» least significant bits are 0x67

Data in memory- big endian

Big endian - most significant bits are in byte 0 of the word

byte

4 contents
7 67
12 6 45
‘ 5 23
é 01 | 23 | 45 | 67 2 o1

0 1 2 3 « byte offsets

Data in memory- little endian

Little endian - least significant bits are in byte 0 of the word

byte

4 contents
7 01
12 6 23
‘ 5 45
é 01 | 23 | 45 | 67 2 -

3 2 1 0 « byte offsets

