File Systems

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

2-June-2004 cse410-28-files © 2004 University of Washington

Readings and References

* Reading

» Chapter 11, Chapter 12 through 12.6, Operating System Concepts,
Silberschatz, Galvin, and Gagne

e Other References

» Chapter 10, Inside Microsoft Windows 2000, Third Edition, Solomon
and Russinovich

2-June-2004 cse410-28-files © 2004 University of Washington 2

Files

» A user-level abstraction for “a collection of bytes in
(non-volatile) storage”

* Files have:
» Name
» Type (implicit or explicit)
» Location - which device, where on that device
» Size (and possibly maximum size)
» Protection - who may read and write this?
» Time, date, and user identification

2-June-2004 cse410-28-files © 2004 University of Washington

Disk File Structure

Disk block is fixed-size contiguous group of disk sectors

Think of a file as simply a sequence of disk blocks
» may not be contiguous

Directory is a file that points to other files or directories

File system issues

» how many sectors per block?

» how do you keep track of which blocks a file is using?
» how do you keep track of which blocks are free?

most files are small, but most 1/0O is to big files. Must
optimize both

Y

2-June-2004 cse410-28-files © 2004 University of Washington 4




File Operations

* File creation
» make room for the file
» enter the new file into the directory
» Writing a file
» specify the file and the data to write to the file
» OS keeps track of your location in the file

» successive writes are placed one after the other in
the file

2-June-2004 cse410-28-files © 2004 University of Washington

More File Operations

* Reading a file

» specify the file and the buffer into which the data should be
read

» OS keeps track of your location in the file
» Location pointer is often shared between read and write
operations
» Repositioning within a file
» Changes the location pointer
» Often called “seeking”
» No actual 1/0

2-June-2004 cse410-28-files © 2004 University of Washington 6

Yet More File Operations

* Deleting a file
» Find the directory entry and delete it
» Mark the space used by the file as free
» Don’t actually “erase” the file
 Truncating a file
» Throw away all the data in the file
» Keep the attribute information

2-June-2004 cse410-28-files © 2004 University of Washington

Opening and Closing Files

» The above six operations are sufficient

» But we also have the notion of the open file

» The open system call tells the OS that the specified
file will be used by several operations
» user need not specify name each time
» OS need not search directories each time

» Location pointers, etc. need only be maintained for open
files

2-June-2004 cse410-28-files © 2004 University of Washington 8




Volumes and Directories

Single-Level Directories

* Avolume is a logical disk

Volume

» there may be more than one volume

Directory

per physical disk
» there may be more than one physical
disk per volume
» The directory lists all of the files in
the volume

Files

 Inasingle-level
directory structure,
the directory lists
all files and their
offsets

e Like atable of
contents

not es410 5

spri ng04 12

t odo

i deas

notes410//

springO4/////i//

t odo J

i deas

2-June-2004 cse410-28-files © 2004 University of Washington

2-June-2004 cse410-28-files © 2004 University of Washington

10

Two-Level Directories

Tree-Structured Directories

* Single-level directories suffer from name

collision

» If you and | both name a file “progl.c” then one

file will overwrite the other

 Split up the space into top-level directories for

each user

» Keep a directory for each user’s files, and a

directory of the user directories

2-June-2004 cse410-28-files © 2004 University of Washington

Let directories contain subdirectories
Arrange files in a tree
To name a file, specify a list of directories

from the top down, plus the name of the file

itself

» This is called a path name
A path beginning at the root is an absolute

path; if part of the path is implied, it’s a

relative path

2-June-2004 cse410-28-files © 2004 University of Washington

12




The Current Directory

File Protection

« Set the current directory with system call
 All future open() calls interpret path names
relative to the current directory
» Saves on directory lookups

* Initial current directory is often set at login
time, to the user’s home directory

* Protection allows the owner of a file or
directory to define who may do what to that
file or directory

» The who is restricted by user or group
» usually use Access Control Lists (ACLsS)

» The what is restricted by type of access:
* read, write, execute

2-June-2004 cse410-28-files © 2004 University of Washington 13

2-June-2004 cse410-28-files © 2004 University of Washington 14

Disk Block Allocation

Contiguous Allocation

The basic unit of storage on a disk is a block

» One or more disk sectors (which are usually 512 bytes)
Each file is stored in one or more blocks

For simplicity, blocks are not split between files;
leftover space at the end of a block is wasted

» internal fragmentation

Allocation strategy: When creating or enlarging a file,
which disk block(s) should be allocated?

2-June-2004 cse410-28-files © 2004 University of Washington 15

In contiguous allocation, a file gets blocks b,
b+1, b+2, ...
Directory entry stores starting location, length

Two blocks with sequential numbers are very
likely to be in the same track, so no head
movement is required

What’s the problem?

2-June-2004 cse410-28-files © 2004 University of Washington 16




Contiguous Allocation

» Allocating blocks on one track or adjacent tracks
» makes accessing the file fast

» Random access is easy because offsets are easy to
calculate

» Directory stores location of first sector and length

Pain to make files bigger.

Often, must copy whole files.

2-June-2004 cse410-28-files © 2004 University of Washington 17

Linked allocation

* In linked allocation, a file gets a linked list of
disk blocks

* Directory entry stores starting location

» Each block contains data and a pointer to the
next block

2-June-2004 cse410-28-files © 2004 University of Washington 18

Linked Allocation

Each block contains a pointer to the next block in the
file (the last block is NULL)

Directory stores location of first sector
Advantages
» easy to grow files

Disadvantages

» poor random access

» pay seek penalty many times
» link overhead

2-June-2004 cse410-28-files © 2004 University of Washington 19

Indexed allocation

* In indexed allocation, the file gets a list of disk
blocks

* An index block contains the block list

2-June-2004 cse410-28-files © 2004 University of Washington 20




Indexed Allocation

An array lists where each block of the file is
stored

Try to allocate blocks contiguously
But can allocate blocks anywhere

Issues
» Where is this array list stored? E
» Is the array fixed size?

2-June-2004 cse410-28-files © 2004 University of Washington

Unix Inodes

* In Unix this list of blocks is stored in an inode
» for each file a directory stores the file name and an inode
» Some entries point directly to a file block
» these are sufficient for small files (up to 1KB)
» Some entries point to a list of block entries
» these are sufficient for medium sized files (up to 256KB)
» Some entries point to lists of lists of block entries
» these are sufficient for large files (up to 64MB)
» Some entries point to lists of lists of lists of block
entries
» these are sufficient for humongous files (up to 16GB)

2-June-2004 cse410-28-files © 2004 University of Washington 22

Inode Example

direct

P B 1

singly indirect

doubly indirect

triply-indirect

2-June-2004 cse410-28-files © 2004 University of Washington

23

Free Space

» How do you find free disk blocks?

» Bitmap: One long string of bits represents the
disk, one bit per block

 Linked list: each free block points to the next
one (slow to search for runs of blocks)

» Grouping: list free blocks in the first free block

» Counting: keep a list of streaks of free blocks
and their lengths

2-June-2004 cse410-28-files © 2004 University of Washington 24




Sectors per Block

Win2K File System

» What if there are many sectors per block
» a file might fit in a single block (faster access)
» internal fragmentation

» What if there is only one sector per block

» increases access time because files are spread
over multiple blocks

* The root directory of a volume is stored at a fixed location
so you always know where to start

» The MFT (master file table) stores information about each
file
» Each entry is 1KB and stores
» name, attribute, security info, data

» asmall file’s data fits in the MFT entry (don’t even need to allocate
another block)

» or data can be list of block ranges (similar to inodes)
» A directory is like any other file

» it stores the MFT numbers of the files or subdirectories in that
directory

2-June-2004 cse410-28-files © 2004 University of Washington 25

2-June-2004 cse410-28-files © 2004 University of Washington 26

Making Disks Faster

Disk Buffers

» What if a program reads just one value from a
file and does some processing?

» What if a program writes results to a file in the
same way?

» Ways to make disks faster
» caching
» minimize seeks

2-June-2004 cse410-28-files © 2004 University of Washington 27

» Most files are read sequentially

* When one block is read, the disk reads the
blocks that follow it because they will likely be
read too

» These blocks are stored in a memory buffer on
the disk

* Reads to the next blocks don’t have to pay
seek and rotational delay

2-June-2004 cse410-28-files © 2004 University of Washington 28




File Caches

* File accesses exhibit locality just like everything else
» Therefore cache frequently-used file blocks in main
memory
» modern file systems wouldn't work without this
* It's interesting that we use memory to store
frequently-used disk blocks and disk to store
infrequently used memory pages

2-June-2004 cse410-28-files © 2004 University of Washington 29

File Cache
. . Memory
» A portion of memory is devoted to : .
storing frequently used files Virtual memory
pages
* The amount of memory changes based
on the workload File cache
» if more files are being accessed then use Frequ used
more memory file blocks

 Virtual pages that are evicted from
physical memory often go to the file
cache before the page file
» gives a virtual page another chance

» doesn't require a copy because file cache can
be stored anywhere in memory

2-June-2004 cse410-28-files © 2004 University of Washington 30

Disk Layout

 Prevent fragmentation
» allocate files to contiguous blocks

 Put directories and their files (and the files'
inodes) near each other Ditectory on same track

as files in the directory

» improves locality, reduce seek time
e Put commonly used
directories in center track

2-June-2004 cse410-28-files © 2004 University of Washington 31

Disk Scheduling

» The disk has requests to read tracks
» 0,10, 4, 7 (0 is on the outside)
* |If the disk head is at track 1, how should we

order these reads to minimize how far the disk
head moves?

2-June-2004 cse410-28-files © 2004 University of Washington 32




Disk Scheduling

e FIFO--First In First Out
» lots of back and forth seeking

e SSTF--Shortest Seek Time First
» pick the request closest to the disk head
» starvation is an issue

* SCAN, C-SCAN
» also known as an elevator algorithm
» take the closest request in the direction of travel
» head moves back and forth from edge to edge

2-June-2004 cse410-28-files © 2004 University of Washington

33




