Virtual Memory

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

Readings and References

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington

* Reading

» Chapter 10 through 10.7.1, Operating System Concepts, Silberschatz,
Galvin, and Gagne

e Other References

» Chapter 7, Inside Microsoft Windows 2000, Third Edition, Solomon
and Russinovich

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington

Virtual Memory

* Virtual memory paging to disk
» manage memory as though we always had enough
» 1f more is needed, use disk as backup storage
» Demand Paging
» load program pages in to memory as needed
» Another level of the storage hierarchy
» Main memory is a cache
» Disk space is the backing store

Virtual Memory

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington

VPN memory
0

» Page table entry can
point to a PPN or a
location on disk (offset
into page file)

» A page on disk is
swapped back in when
it is referenced but is
not actually present in
main memory

» page fault

OO[(N[D| | B[W[IN[F[O

=
o

Demand Paging

 As a program runs, the memory pages that it
needs may or may not be in memory when it
needs them
» If in memory, execution proceeds
» 1f not in memory, page is read in from disk and

stored in memory

o If desired address is not in memory, the result

Is a page fault

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington

A reference to memory location X

* MMU: Is X's VPN in the Translation Lookaside Buffer?
» Yes => get data from cache or memory. Done.
» No =>Trap to OS to load X's VPN/PPN into the TLB
» OS: Is X's page actually in physical memory?
» Yes =>replace a TLB entry with X's VPN/PPN. Return control to
original thread and restart instruction. Done.
» No =>must load the page from disk
» OS: replace a current page in memory with X’s page from disk
» pick a page to replace, write it back to disk if dirty
» load X's page from disk into physical memory
» Replace the TLB entry with X's VPN/PPN.
» Return control to original thread and restart instruction. Done!

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 6

Page Fault Example

VPN memory VPN memory VPN memory
0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
P N N
> 6 > 6 > 6
6 6 6
Z; age file ; age file ; / page file
9\ 7 o] | N o/ o1
10 2 10 2 10 2
\EE 3 3
4 4 4
5 5 5
Y6 6 6
Reference to VPN 10 PPN 6 has not been Read VPN 10 from the
causes a page fault used recently. Write it page file into physical

because it is not in memory. to the page file. memory at PPN 6.

Virtual Memory & Memory Caches

» Physical memory can be thought of as a cache of the
page file

» Many of the same concepts we learned with memory
caches apply to virtual memory
» both work because of locality
» dirty bits prevent pages from always being written back

» Some implementation aspects are different

» Virtual Memory is usually fully associative with complex
replacement algorithms because a page fault is so
expensive (at least one disk read is required)

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 8

Replacement Algorithms

* FIFO - First In, First Out
» throw out the oldest page
» often throws out frequently used pages
« RANDOM - toss a random page
» works okay, but not good enough
e OPT - toss the one you won’t need
» pick page that won't be used for the longest time
» provably optimal, but impossible to implement

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 9

Approximations to OPT

* LRU - Least Recently Used

» remember temporal locality?

« if we have used a page recently, we probably will use it
again in the near future

» LRU is hard to implement exactly since there is
significant record keeping overhead

e CLOCK - approximation of LRU
» and LRU is an approximation of OPT

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 10

Perfect LRU

* Least Recently Used
» timestamp each page on every reference
» on page fault, find oldest page

» can keep a queue ordered by time of reference
* but that requires updating the queue every reference

» too much overhead per memory reference

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 11

LRU Approximation: Clock

 Clock algorithm
» replace an old page, not necessarily the oldest
page
» Keep a reference bit for every physical page
» memory hardware sets the bit on every reference
» bit isn't set => page not used since bit last cleared
« Maintain a “next victim” pointer

» can think of it as a clock hand, iterating over the
collection of physical pages

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 12

Tick, tick,

* On page fault (we need to replace somebody)
» advance the victim pointer to the next page
» check state of the reference bit

» If set, clear the bit and go to next page

* this page has been used since the last time we looked.
Clear the usage indicator and move on.

» If not set, select this page as the victim
« this page has not been used since we last looked
* replace it with a new page from disk

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 13

Find a victim

A% Sz
Sabg A

advance; PPN 0 has PPN 1 has been used; PPN 2 has been used:
been used; clear and clear and advance clear and advance
advance

PPN 3 has been not
been used; replace
and set use bit

Clock Questions

» Will Clock always find a page to replace?

» at worst it will clear all the reference bits, finally
coming around to the oldest page

* If the hand is moving slowly?
» not many page faults

* If the hand is moving quickly?
» many page faults
» lots of reference bits set

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 15

Thrashing

» Thrashing occurs when pages are tossed out,
but are needed again right away
» listen to the hard drive grind
» Example: a program touches 50 pages often but
there are only 40 physical pages in system
» What happens to performance?
» enough memory 2 ns/ref (most refs hit in cache)

» not enough memory 2 ms/ref (page faults every few numper of processes
instructions)

* Very common with shared machines

throughput

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 16

Thrashing Solutions Working Set

* If one job causes thrashing » The working set of a process is the set of pages that it
» rewrite program to have better locality of is actually using
reference » set of pages a job has used in the last T seconds

» usually much smaller than the amount it might use
* If working set fits in memory process won't thrash

* Why do we adjust the working set size?
» too big => inefficient because programs keep pages in

If multiple jobs cause thrashing
» only run as many processes as can fit in memory
Big red button

» Sswap out some memory hogs entirely memory that they are not using very often
o » too small => thrashing results because programs are losing
Buy more memory pages that they are about to use
28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 17 28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 18
Appendix Win2K Memory Management
Windows 2000 Example » Win2K Pro/Server/DataCenter

» can manage 4 to 64GB physical memory

» Virtual address is 2GB user, 2GB system
» Some services of memory manager

» allocate / free virtual memory

» share memory between processes

» map large files into memory

» lock pages in memory

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 19 28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 20

W2K Working Set

 Subset of virtual pages resident in physical
memory is the current working set

* W2K allows working set to grow
» demand paging causes read from disk

» reads in clusters of pages on a fault - 8 pages for
code, 4 pages for data

» Working set is trimmed as necessary
» using version of the clock algorithm

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 21

Managing allocations

A process reserves address space
» tell the OS that we will need this memory space

» OS builds Virtual Address Descriptors but does
not build page tables

 then commits pages in the address space
» room exists for the pages in memory or on disk

» OS builds page table for committed page when a
page fault occurs

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 22

Example: Stack Allocation

o Stack area is reserved when thread starts

» generally 1MB, although this can be changed at
thread creation or with a linker switch

» Just one page of 4KB is committed
» the following page is marked PAGE_GUARD

» If page fault, then one more page is committed and
the stack is allowed to grow another 4KB until it
happens again

E windows Task Manager i] B4
File Options Wiew Help

Applications I Processes Perfor

—iCPU Usage —— [CPU Usage Hiskory

Total committed
memory greater
than installed

physica| memory ~MEM Usage —— ~Memary Usage Histary

installed memory

T—‘Physical Memary (k)

Handles 4223 N Taotal 196030
Threads 240 Bvailable 452
Processes 37 Swstem Cache 14416
currently committed — Commit Charge (k) —kernel Memary (k)
~~Takal 206196 Takal 24944

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 23

— Limnit 472144 Paged 21065
physical memory Peak 206476 Nonpaged 3576
plus page file

|Prcu:esses: 37 CPU Usage: 1% Mem sage; 206196k | 472144k i

Virtual Address Descriptors

binary tree of descriptors
stores information about the } \
reserved range of addresses

Range: 20000000- 2000FFFF
Protect: RR'W
I nherit: Yes

AN

Range: 00002000- 0000FFFF Range: 4E000000- 4FO00000
Protect: Read Only Protect: Copy-on-wite
Inherit: No I nherit: Yes

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 25

Two-level Page Tables

32-bit virtual address

Page directory index H Page table index ‘ ‘ byte offset R
10 bits / 10 bits 12 bits
’_I:

PFN __/\: 4KB page
|

table #
Page Directory 1024 Page Tables Physical Memory
(1024 entries) (1024 entries per table)

Shared Memory

» “Section Objects” or file mapping objects

» Map portion of address space to common
physical pages
» generally backed up with paging to disk

* page file backed - shared memory

* data file backed - memory mapped file, can be
shared

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 27

Address Windowing Extensions

What do you do when 2GB is too small?
Allocate huge chunks of physical memory

Designate some virtual pages that are a
window into that physical memory

Remap the virtual pages to point to different
parts of the physical memory as needed

Useful for large database applications, etc

28-May-2004 cse410-27-virtualmemory © 2004 University of Washington 28

AWE mapping e
Dat a pages
4GB
o5
Dat a pages
2 GB Dat a pages
App /
AVE w ndow Dat a pages
0 0

Server Application Physi cal Menory

Virtual Address Space

