
24-May-2004 cse410-25-deadlock © 2004 University of Washington 1

Deadlock

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

24-May-2004 cse410-25-deadlock © 2004 University of Washington 2

Readings and References

• Reading
» Chapter 8, Operating System Concepts, Silberschatz, Galvin, and

Gagne

• Other References

24-May-2004 cse410-25-deadlock © 2004 University of Washington 3

Deadlock
• Circular waiting for resources

» Task A wants what task B has
» Task B wants what task A has

• No progress possible!
» Neither can make progress without the other’s resource
» Neither will relinquish its own resource

...

lockOne->Acquire();

...

...

lockTwo->Acquire();

...

lockTwo->Acquire();

lockOne->Acquire();

DEADLOCK!

24-May-2004 cse410-25-deadlock © 2004 University of Washington 4

Simple Traffic Gridlock Example



24-May-2004 cse410-25-deadlock © 2004 University of Washington 5

System Model

• There are tasks and resources
• A task follows these steps to utilize a resource

» Acquire the resource
• If the resource is unavailable, block

» Use the resource
» Release the resource

CA B

D

Necessary Conditions for Deadlock
• Mutual Exclusion

» The resource can’t be shared

• Hold and Wait
» Task holds one resource while waiting for another

• No Preemption
» If a task has a resource, it cannot be forced to give it up

• Circular Wait
» A waits for B, B for C, C for D, D for A

24-May-2004 cse410-25-deadlock © 2004 University of Washington 7

Is Gridlock an Example of Deadlock?

• Mutual Exclusion
» space-time can only hold one car at a time

• Hold and wait
» I’m here, and I want to turn left, so watch out

• No preemption
» cannons are not allowed in cars at this time

• Circular wait
» blue waiting for red’s space and vice versa

24-May-2004 cse410-25-deadlock © 2004 University of Washington 8

Dealing with Deadlock

• Deadlock Prevention
» Ensure statically that deadlock is impossible

• Deadlock Avoidance
» Ensure dynamically that deadlock is impossible

• Deadlock Detection and Recovery
» Allow deadlock to occur, but notice when it does and try to

recover

• Ignore the Problem
» Let the operator untangle it, that's what they're paid for



24-May-2004 cse410-25-deadlock © 2004 University of Washington 9

Deadlock Prevention

• There are four necessary conditions for
deadlock

• Take any one of them away and deadlock is
impossible

• Let’s attack deadlock by
» examining each of the conditions
» considering what would happen if we threw it out

24-May-2004 cse410-25-deadlock © 2004 University of Washington 10

Condition: Mutual Exclusion

• Usually can't eliminate this condition
» some resources are intrinsically non-sharable

• Examples include printer, write access to a file
or record, entry into a section of code

• However, you can often mitigate this by
adding a layer of abstraction
» For example, use a print spooler, not direct

connection to the printer.

24-May-2004 cse410-25-deadlock © 2004 University of Washington 11

Condition: Hold and Wait
• Eliminate partial acquisition of resources
• Task must acquire all the resources it needs before it

does anything
» if it can’t get them all, then it gets none

• Issue: Resource utilization may be low
» If you need P for a long time and Q only at the end, you still

have to hold Q’s lock the whole time

• Issue: Starvation prone
» May have to wait indefinitely before popular resources are all

available at the same time

24-May-2004 cse410-25-deadlock © 2004 University of Washington 12

Condition: No Preemption

• Allow preemption
» If a process asks for a resource not currently available,

block it and take away all of its other resources
» Add the preempted resources to the list of resources the

process is waiting for
• This strategy works for some resources:

» CPU state (contents of registers can be spilled to memory)
» memory (can be spilled to disk)

• But not for others:
» printer - rip off the existing printout and tape it on later?



24-May-2004 cse410-25-deadlock © 2004 University of Washington 13

Condition: Circular Wait

• To attack the circular wait condition:
» Assign each resource a priority
» Make processes acquire resources in priority order

• Two processes need the printer and the scanner, both
must acquire the printer (higher priority) before the
scanner

• This is a common form of deadlock prevention
• The only problem: sometimes forced to relinquish a

resource that you thought you had locked up

24-May-2004 cse410-25-deadlock © 2004 University of Washington 14

Deadlock Avoidance

• Deadlock prevention is often too strict
» low device utilization
» reduced system throughput

• If the OS had more information, it could do
more sophisticated things to avoid deadlock
and keep the system in a safe state
» “If” is a little word, but it packs a big punch
» predicting all needed resources a priori is hard

24-May-2004 cse410-25-deadlock © 2004 University of Washington 15

The Banker’s Algorithm

• Idea: know what each
process might ask for

• Only make
allocations that leave
the system in a safe
state

• Inefficient
safe

unsafe

deadlock

Resource allocation
state space

24-May-2004 cse410-25-deadlock © 2004 University of Washington 16

Deadlock Detection

• Build a wait-for graph and
periodically look for cycles, to
find the circular wait condition

• The wait-for graph contains:
» nodes, corresponding to tasks
» directed edges, corresponding to

a resource held by one task and
desired by the other

E

CA B

D

A waits for B
B waits for D
D waits for A

deadlock!



24-May-2004 cse410-25-deadlock © 2004 University of Washington 17

Deadlock Recovery

• Once you’ve discovered deadlock, what next?
• Terminate one of the tasks to stop circular wait?

» Task will likely have to start over from scratch
» Which task should you choose?

• Take a resource away from a task?
» Again, which task should you choose?
» How can you roll back the task to the state before it had

the coveted resource?
» Make sure you don’t keep on preempting from the same

task: avoid starvation

24-May-2004 cse410-25-deadlock © 2004 University of Washington 18

Ignoring Deadlock

• Not a bad policy for operating systems
• The mechanisms outlined previously for

handling deadlock may be expensive
» if the alternative is to have a forced reboot once a

year, that might be acceptable
• However, for thread deadlocks, your users may

not be quite so tolerant
» “the program only locks up once in a while”


