
19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 1

Synchronization Part 1

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 2

Readings and References

• Reading
» Chapter 7, Operating System Concepts, Silberschatz, Galvin, and

Gagne. Read the following sections: 7.1, 7.2 (skim subsections), 7.3

• Other References
» Chapter 6, Multithreaded Programming with Pthreads, First edition,

Bil Lewis and Daniel J. Berg, Sun Microsystems Press

» Sections 5.8.3, Atomicity and Atomic Changes, 5.8.4, Critical Regions
with Interrupts Enabled, See MIPS Run, Dominic Sweetman

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 3

Too Much Milk

Arrive home; put milk away
Oh no, Mr. Bill, too much milk!

3:30
Buy milk3:25
Arrive at storeArrive home; put milk away3:20
Leave for storeBuy milk3:15
Look in fridge; no milkArrive at store3:10

Leave for store3:05
Look in fridge; no milk3:00

Your RoommateYou

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 4

Modeling the Problem

• Model you and your roommate as threads
• “Looking in the fridge” and “putting away

milk” are reading/writing a variable
YOU:

// look in fridge
if(milkAmount == 0) {
// buy milk
milkAmount++;

}

YOUR ROOMMATE:

// look in fridge
if(milkAmount == 0) {
// buy milk
milkAmount++;

}

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 5

Correctness Properties

• Decomposed into safety and liveness
» safety

• the program never does anything bad
» liveness

• the program eventually does something good

• Although easy to state, these properties are not
always easy to meet

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 6

Synchronization Definitions

• Synchronization
» coordinated access by more than one thread to

shared state variables
• Mutual Exclusion

» only one thread does a particular thing at a time.
One thread doing it excludes all others.

• Critical Section
» only one thread executes in a critical section at

once

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 7

Locks

• A lock provides mutual exclusion
» Only one thread can hold the lock at a time
» A lock is also called a mutex (for mutual exclusion)

• Thread must acquire the lock before entering a
critical section of code

• Thread releases the lock after it leaves the
critical section

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 8

Too Much Milk: A Solution
YOU:

MilkLock->Acquire();
if(milkAmount == 0){

// buy milk
milkAmount++;

}
}
MilkLock->Release();

YOUR ROOMMATE:

MilkLock->Acquire();

 delay

if(milkAmount == 0){
// buy milk
milkAmount++;

}
}
MilkLock->Release();

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 9

Lock Implementation Issue
• A context switch can happen at any time

» very simple acquire/release functions don’t work
» in this case, both threads think they set lockInUse

Lock::Acquire() {
while(lockInUse) {}
lockInUse = true;

}

Lock::Release() {
lockInUse = false;

}

Lock::Acquire() {
while(lockInUse) {}
lockInUse = true;

}

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 10

Disable interrupts during critical section
• disable interrupts to prevent a context switch

» simple but imperfect solution

Lock::Acquire() {
disable interrupts;

}

Lock::Release() {
enable interrupts;

}

• Kernel can’t get control when interrupts disabled
• Critical sections may be long

» turning off interrupts for a long time is very bad
• Turning off interrupts is difficult and costly in

multiprocessor systems

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 11

Disable Interrupts with flag

Only disable interrupts when updating a lock flag

Lock::Release() {
disable interrupts;
value = FREE;
enable interrupts;

}

initialize value = FREE;

Lock::Acquire() {
disable interrupts;
while(value != FREE){
enable interrupts;
disable interrupts;

}
value = BUSY;
enable interrupts

}

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 12

Atomic Operations

• An atomic operation is an operation that
cannot be interrupted

• On a multiprocessor disabling interrupts
doesn’t work well

• Modern processors provide atomic read-
modify-write instruction or equivalent

• These instructions allow locks to be
implemented on a multiprocessor

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 13

Examples of Atomic Instructions

• Test and set (many architectures)
» sets a memory location to 1 and returns the previous value
» if result is 1, lock was already taken, keep trying
» if result is 0, you are the one who set it so you’ve got the lock

• Exchange (x86)
» swaps value between register and memory

• Compare & swap (68000)
read location value

if location value equals comparison value

store update value, set flag true

else

set flag false

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 14

Quasi-atomic for load/store ISA

• Remember our MIPS pipeline
» only one memory stage per instruction
» thus, can’t do atomic “read, modify, write” directly

• Load linked and store conditional
» read value in one instruction (LL—load linked) and

remember where the value came from
» do some operation on the value
» when store occurs, check if value has been modified in

the meantime (SC—store conditional)
» if not modified, store new value and return “success”
» if modified, return “failure”

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 15

Locks with Test and Set

This works, but take a careful look at the
while loop ... when does it exit?

Lock::Release() {
value = 0;

}

Lock::Acquire() {
while(TestAndSet(value)) {}

}

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 16

Busy Waiting

• CPU cycles are consumed while the thread is
waiting for value to become 0

• This is very inefficient
• Big problem if the thread that is waiting has a

higher priority than the thread that holds the
lock

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 17

Locks with Minimal Busy Waiting

• Use a queue for threads waiting on the lock
• A guard variable provides mutual exclusion

Lock::Release() {
while(TestAndSet(guard){}
if(anyone on wait queue){
move thread from wait

queue to ready queue;
} else {
value = FREE;

}
guard = 0;

}

Lock::Acquire() {
while(TestAndSet(guard)){}
if(value != FREE) {
Put self on wait queue;
guard = 0 and switch();

} else {
value = BUSY;
guard = 0;

}
}

19-May-2004 cse410-23-synchronization-p1 © 2004 University of Washington 18

Synchronization Summary

• Threads often work independently
• But sometimes threads need to access shared data
• Access to shared data must be mutually exclusive to

ensure safety and liveness
• Locks are a good way to provide mutual exclusion

