Virtual Memory

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

Reading and References

* Reading

» Section 7.4-7.5, Computer Organization and Design,
Patterson and Hennessy

e Reference
» Chapter 4, Caches for MIPS, See MIPS Run, D. Sweetman

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington
Layout of program memory Program Memory Addresses
7FFF FFFE reserved (4KB) .
TEFE EFFF stack (grows down) * Program addresses are fixed at the time the
v source file is compiled and linked
~1792 MB
+ * Small, simple systems can use program
Not to addresses as the physical address in memory
1001 0000 heap (grows up) Scale!
1000 9660 global data (64 KB) * Modern systems usually much more complex
OFFE FEEE » program address space very large
program (252 MB)
0040 0000 » other programs running at the same time
SRS reserved (4 MB) » operating system is in memory too
28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington

Direct Physical Addressing

Physical Addressing

* Address generated by the program is the same as the
address of the actual memory location

physical
addresses » Simple approach, but lots of problems
> . . .
program —— » Only one process can easily be in memory at a time
addresses S » There is no way to protect the memory that the process
e > isn't supposed to change (ie, the OS or other processes)
HD|:> - physical upp g s p
heap — » A process can only use as much memory as is physically
program 3 in the computer
— » A process occupies all the memory in its address space,
— even if most of that space is never used
+ 2 GB for the program and 2 GB for the system kernel
28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 6
Memory Mapping Virtual Addresses

program memory physical
addresses mapping addresses

stack

I >

program

physical

stack

| >

program

memory

VYVVVVVVVVVVVVYYVYY

stack

| >

program

|

* The program addresses are now considered to
be “virtual addresses”

* The memory management unit (MMU)
translates the program addresses to the real
physical addresses of locations in memory

* This is another of the many interface layers
that let us work with abstractions, instead of
all details at all levels

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 8

Multiple Processes

. Virtual Physical Virtual Physical
Pagin Page # Page # P P
g g 0x00001 g o |Ox0o00 Share Memory 0x0000 age # a?)e #0xoooo
. : 1 1 1 1
* Divide a process's virtual 2 2 > >
address e “ﬁtodﬁxed' : 3 3 « Each process thinks it 3 3
size chunks (called pages
Divide physical merlr)lofy g ‘51 starts at address : :
. « 5 5
into pages of the same size et 6 0x0000 and has all of ~ oxeoor 6
+ Any virtual page can be 0x0000[g ; memory 0x0000 7
i 8
located at any physical 1 5 e A process doesn't 1
paec 2 E know anything about : 9
* Translation box converts oxa00ol_3 11 OW anything abou e K 10
from virtual pages to 12 physwal addresses 1;
physical pages Translation (s and doesn't care Translation
0xE000 13 0xXE000
Protection | | Store Memory on Disk
Virtual Physical Virtual Physical
Page # Page #)) Page # Page #
» A process can only use 0x0000[g [* Memory that isn't being 0x0000 [T 0] 0x0000
virtual addresses 1 1 used can be saved on disk 1 1
' 2 2 » swapped back in when it is 2 2
* A process can't corrupt 3 3 f dvi faul 3 3
2 2 referenced via page fault
another process's memory 4 4
S - 5 * Programs can address E E
» It has no address to refer to it 5 more memory than is 5 s
* How can Blue write to 0x00007g Z physically available 7 7
Greens's page 22 1 5 * This is an important 2 g 05000
» needs an address to refer to 2 10 reason for virtual memory i
physical page 7, but it doesn't ~ °**°°° 11 » too hard for programs to do 11
have one Transiation \a this on their own (using 12 @
13 Joxmooo overlays, for example) 0x2000] 13 { Translation DS

Sparse Address

S _ _ Sharing Memory e prysical
paces Virtual Physical age # age #
0x0000 0 0 0x0000
., raged# Page# « Two processes can share
* 0 o | . 1 1
Memory addresses that 1 1 memory by mapping two 2 2
aren't being used at all 2 2 virtual pages to the same 3 3
don't have to be in 0xa000| 3 3 physical page 2 g
memory or on disk : The code for Word can be oxso00 Word s
Unused
» Code can start at a very e s shared for two Word %0000 [7
low logical address 7 processes 8
0x0FFC000[997 1
» Sjtack can start at a very 998 8 » code pages are read only 2 9
high logical address 9 | oxnooo . 3 10
No ohveical 999 Each process has its own T
» No physical pages s+1000000| 2000 data pages 4 =
allocated for unused Translation . ox6000L_2__| Translatio
addresses in between » possible to share data pages Word 13 loxeooo
too, but less common
Virtual Address Translation program -> virtual -> physical
program address (32 bits)
virtual physical llllllllllll.lll.lll.llllll
address Virtual Physical address virtual page number (20 bits) offset in page (12)
Page # page # @
Offset Offset ’memory management unit ‘
physical page number (n bits) | offset in page (12)
llll‘lll‘lll.lllllllll‘lll
physical address (n+12 bits)
28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 15 28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 16

Page Tables

» Offset field 1s 12 bits
» so each page is 2!2 bytes = 4096 bytes = 4KB
 Virtual Page Number field is 20 bits
» s0 220 = 1 million virtual pages
 Page table is an array with one entry for
each virtual page
» 1 million entries

» entry includes physical page number and flags

Gack!

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 17

» Each process has a page table with 1 Million
entries - big
» no memory left to store the actual programs

» Each page table must be referenced for every
address reference in a program - slow

» no time left to do any useful work

* But wait, system designers are clever kids

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 18

Page tables - size problem

* The page tables are addressed using virtual
addresses in the kernel

* Therefore they don’t need physical memory
except for the parts that are actually used

» see “Sparse Address Spaces” diagram

* Operating System manages these tables in its
own address space
» kernel address space

Page Tables - speed problem

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 19

 Use special memory cache for page table
entries - Translation Lookaside Buffer
» Each TLB entry contains
» address space ID number (part of the tag)
» virtual page number (rest of the tag)
» flags (read only, dirty, etc)
» associated physical page number (the data)

» TLB is a fully associative cache

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 20

Using the TLB

A Process
Page Table

PPN

Process

Program address

‘ASID" Virtual Page Number

Offset

Translation Buffer

<«
ASID‘ VPN

Physical Page Number

\

Physical address \\\

A

y

’Physical Page NumberlOffset‘

Classifying Memory Management

28-Apr-2004

cse410-14-virtual-memory © 2004 University of Washington

21

* Where can a block be placed?

» Direct mapped, N-way Set or Fully associative
How is a block found?

» Direct mapped: by index

» Set associative: by index and search

» Fully associative: by search or table lookup
Which block should be replaced?

» Random

» LRU (Least Recently Used)
What happens on a write access?

» Write-back or Write-through

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 22

