
28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 1

Virtual Memory

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 2

Reading and References

• Reading
» Section 7.4-7.5, Computer Organization and Design,

Patterson and Hennessy

• Reference
» Chapter 4, Caches for MIPS, See MIPS Run, D. Sweetman

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 3

Layout of program memory

reserved (4 MB)
0000 0000

003F FFFF

0040 0000

0FFF FFFF

1000 0000
1000 FFFF

program (252 MB)

Not to
Scale!

global data (64 KB)

7FFF EFFF stack (grows down)

heap (grows up)1001 0000

~1792 MB

reserved (4KB)7FFF FFFF

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 4

Program Memory Addresses

• Program addresses are fixed at the time the
source file is compiled and linked

• Small, simple systems can use program
addresses as the physical address in memory

• Modern systems usually much more complex
» program address space very large
» other programs running at the same time
» operating system is in memory too



28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 5

Direct Physical Addressing

heap
program

stack
physical

memory

program
addresses

physical
addresses

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 6

Physical Addressing

• Address generated by the program is the same as the
address of the actual memory location

• Simple approach, but lots of problems
» Only one process can easily be in memory at a time
» There is no way to protect the memory that the process

isn't supposed to change (ie, the OS or other processes)
» A process can only use as much memory as is physically

in the computer
» A process occupies all the memory in its address space,

even if most of that space is never used
• 2 GB for the program and 2 GB for the system kernel

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 7

Memory Mapping

heap
program

stack

physical

memory

heap
program

stack

heap
program

stack

program
addresses

physical
addresses

memory
mapping

disk

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 8

Virtual Addresses

• The program addresses are now considered to
be “virtual addresses”

• The memory management unit (MMU)
translates the program addresses to the real
physical addresses of locations in memory

• This is another of the many interface layers
that let us work with abstractions, instead of
all details at all levels



Paging

• Divide a process's virtual
address space into fixed-
size chunks (called pages)

• Divide physical memory
into pages of the same size

• Any virtual page can be
located at any physical
page

• Translation box converts
from virtual pages to
physical pages

0
1
2
3
4
5

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Translation

Virtual
Page #

Physical
Page #

0x0000

0x6000

0x0000

0x4000

0x0000

0xE000

Multiple Processes
Share Memory

• Each process thinks it
starts at address
0x0000 and has all of
memory

• A process doesn't
know anything about
physical addresses
and doesn't care

0
1
2
3
4
5

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Translation

Virtual
Page #

Physical
Page #

0x0000

0x6000

0x0000

0x4000

0x0000

0xE000

Protection

• A process can only use
virtual addresses

• A process can't corrupt
another process's memory
» It has no address to refer to it

• How can Blue write to
Greens's page 2?
» needs an address to refer to

physical page 7, but it doesn't
have one

0
1
2
3
4
5

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Translation

Virtual
Page #

Physical
Page #

0x0000

0x6000

0x0000

0x4000

0x0000

0xE000

Store Memory on Disk

• Memory that isn't being
used can be saved on disk
» swapped back in when it is

referenced via page fault
• Programs can address

more memory than is
physically available

• This is an important
reason for virtual memory
» too hard for programs to do

this on their own (using
overlays, for example)

0
1
2
3
4
5
6
7
8
9

Translation

Virtual
Page #

Physical
Page #

0x0000

0xE000

0x0000

0xA000

Disk

0
1
2
3
4
5
6
7
8
9
10
11
12
13



Sparse Address
Spaces

• Memory addresses that
aren't being used at all
don't have to be in
memory or on disk
» Code can start at a very

low logical address
» Stack can start at a very

high logical address
» No physical pages

allocated for unused
addresses in between

0
1
2
3
4
5
6
7
8
9

Translation

Virtual
Page #

Physical
Page #

0x0000

0x1000000

0x0000

0xA000

0
1
2
3

997
998
999
1000

0x4000

0x0FFC000

Unused

Sharing Memory
• Two processes can share

memory by mapping two
virtual pages to the same
physical page

• The code for Word can be
shared for two Word
processes
» code pages are read only

• Each process has its own
data pages
» possible to share data pages

too, but less common

0
1
2
3
4
5

Translation

Word

Virtual
Page #

Physical
Page #

0x0000

0x6000

0x0000

0xE000

0
1
2
3
4
5

Word

0x0000

0x6000

0
1
2
3
4
5
6
7
8
9
10
11
12
13

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 15

Virtual Address Translation

Translate
Virtual

Page #

Physical

page #

virtual
address

VPN

Offset

physical
address

PPN

Offset

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 16

program -> virtual -> physical

virtual page number (20 bits) offset in page (12)

program address (32 bits)

memory management unit

physical page number (n bits) offset in page (12)

physical address (n+12 bits)



28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 17

Page Tables

• Offset field is 12 bits
» so each page is 212 bytes = 4096 bytes = 4KB

• Virtual Page Number field is 20 bits
» so 220 = 1 million virtual pages

• Page table is an array with one entry for
each virtual page
» 1 million entries
» entry includes physical page number and flags

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 18

Gack!

• Each process has a page table with 1 Million
entries - big
» no memory left to store the actual programs

• Each page table must be referenced for every
address reference in a program - slow
» no time left to do any useful work

• But wait, system designers are clever kids

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 19

Page tables - size problem

• The page tables are addressed using virtual
addresses in the kernel

• Therefore they don’t need physical memory
except for the parts that are actually used
» see “Sparse Address Spaces” diagram

• Operating System manages these tables in its
own address space
» kernel address space

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 20

Page Tables - speed problem

• Use special memory cache for page table
entries - Translation Lookaside Buffer

• Each TLB entry contains
» address space ID number (part of the tag)
» virtual page number (rest of the tag)
» flags (read only, dirty, etc)
» associated physical page number (the data)

• TLB is a fully associative cache



28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 21

Using the TLB

ASID Virtual Page Number Offset

ASID Physical Page NumberVPN

Physical Page Number Offset

Program address

Translation Buffer

Physical address

...

PPN

...

A Process
Page Table

refill

Process

28-Apr-2004 cse410-14-virtual-memory © 2004 University of Washington 22

Classifying Memory Management
• Where can a block be placed?

» Direct mapped, N-way Set or Fully associative
• How is a block found?

» Direct mapped: by index
» Set associative: by index and search
» Fully associative: by search or table lookup

• Which block should be replaced?
» Random
» LRU (Least Recently Used)

• What happens on a write access?
» Write-back or Write-through


