Procedures

CSE 410, Spring 2004

Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

Readings and References

* Reading
» Sections 3.6, A5, A6, P&H

 note error in figure 3.13 - $a0-$a3 are not preserved

» Section 4.2, Signed and Unsigned Numbers, P&H

« another presentation of binary, hex, and decimal
* ignore signed numbers for now, we will cover them next week

 Other References

» MIPSpro Assembly Language Programmer’s Guide,
document number 007-2418-006, Silicon Graphics, 2003

e copy linked from our web site on otherlinks page

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

Instructions and Data flow

instructions and
data

main
memory

instructions

program counter

increments by 4

and data

32 bits wide
32 in number

registers

functional units

implement instructions

5-Apr-2004

cse410-06-procedures-a © 2004 University of Washington

Layout of program memory

7FFF
7FFF

1001

1000
1000

OFFF

0040
O03F
0000

FFFF

reserved (4KB)

EFFF

0000

stack (grows down)

v

~1792 MB

f

heap (grows up)

FFFF
0000

global data (64 KB)

FFFF

0000

program (252 MB)

FFFF
0000

reserved (4 MB)

Not to
Scale!

5-Apr-2004

cse410-06-procedures-a © 2004 University of Washington

Why use procedures?

* So far, our program i1s just one long run of
instructions

* We can do a lot this way, but the program
rapidly gets too large to handle easily

* Procedures allow the programmer to organize
the code 1nto logical units

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

What does a procedure do for us?

* A procedure provides a well defined and
reusable interface to a particular capability

» entry, exit, parameters clearly 1dentified

* Reduces the level of detail the programmer
needs to know to accomplish a task
* The internals of a function can be 1gnored

» messy details can be hidden from innocent eyes

» 1nternals can change without affecting caller

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

How do you use a procedure?

set up parameters

transfer to procedure

acquire storage resources

do the desired function

make result available to caller

return storage resources

A G

return to point of call

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

Calling conventions

* The details of how you implement the steps for
using a procedure are governed by the calling
conventions being used

* There 1s much variation 1n conventions

» which causes much programmer pain

* Understand the calling conventions of the

system you are writing for
» 032, n32, n64, P&H, cse410, ...

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 8

1. Set up parameters

* The registers are one obvious place to put
parameters for a procedure to read

» very fast and easily referenced
* Many procedures have 4 or less arguments

» $a0, $al, $a2, $a3 are used for arguments

* ... but some procedures have more
» we don’t want to use up all the registers

» SO We use memory to store the rest

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

The Stack

» Stack pointer ($sp) points to the “top” value on
the stack (ie, the lowest address 1n use)

e There are no “push” or “pop’ instructions

» we adjust the stack pointer directly

 stack grows downward towards zero
» subu $sp, $sp, xx : make room for more data

» addu $sp, $sp, xx : release space on the stack

» note that both subu and addu become addiu

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 10

Dynamic storage on the stack

jal main

12 ($sp)
8 ($sp)
4 ($sp)
0($sp)

7
.
.

i
__

$sp| Ox7fffed£fs8

main:

Ox7fffeel4
O0x7fffeel0
Ox7fffedfc
Ox7fffedf8
Ox7fffedf4
Ox7fffedfo
Ox7fffedec
Ox7fffede8
Ox7fffede4d

towards 0

v

20 ($sp)
16 ($sp)
12 ($sp)
8 ($sp)
! ! ! 4($SP)
L 0 ($sp)
-
o
2
$sp| 0x7£££fedf0

5-Apr-2004

cse410-06-procedures-a © 2004 University of Washington

11

Layout of stack frame

$sp (on entry) —> |

argument build area
(1f needed)

saved registers
(if needed)

pProcA:
subu $sp, $sp,xx .

local wvariables
(1f needed)

$sp (after subu) —> |

argument build area
(1f needed)

<«— stack frame ——»

towards 0

v

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

12

Argument build area

* Some calling conventions require that caller
reserve stack space for all arguments

» 16 bytes (4 words) left empty to mirror $ao-s$a3
 Other calling conventions require that caller

reserve stack space only for arguments that do
not fit in $a0 - $a3

» so argument build area 1s only present 1f some
arguments didn’t fit in 4 registers

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 13

Agreement

* A procedure and all of the programs that call 1t
must agree on the calling convention

* This 1s one reason why changing the calling
convention for system libraries 1s a big deal

e We will use

» caller reserves stack space for all arguments

» 16 bytes (4 words) left empty to mirror $a0-s$a3

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 14

2. Transfer to procedure

main:

subu $sp, $sp, 8

12 ($sp) Ox7fffeel4 20 ($sp)
8 ($sp) 0x7fffeel0 16 ($sp)
4 ($sp) | | | Ox7fffedfc 12 ($sp)
0($sp) i i | O0x7fffedfs8 8 ($sp)
e 0x7fffedf4 R 4 ($sp)
o 0x7££fedfo L 0 ($sp)
/77| OxVfffedec | .
i 0x7fffede8 o
e 0x7fffeded o
v @
! ! ! ¢ ! ! !
3sp | 0x7fffedfs $sp | 0Ox7EE£edf0
5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 15

Jump and link

e Jump

» can take you anywhere within the currently active
256 MB segment

e Link
» store return address in $ra

» note: this overwrites current value of $ra

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

16

3. Acquire storage resources

—+ argument build area

$sp (on entry).__>“ (if needed)

saved registers
(if needed)

local wvariables
(1f needed)

argument build area
(1f needed)

$sp (after subu) —> |

<«— stack frame ——»

towards 0

v

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

17

3a. Saved registers

* There 1s only one set of registers

» If called procedure unexpectedly overwrites them,
caller will be surprised and distressed

* Another agreement

» called procedure can change $a0-$a3, $v0-$vl,
$t0-$t9 without restoring original values

» called procedure must save and restore value of
any other register it wants to use

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 18

Register numbers and names

number name usage
0 Zero always returns 0
1 at reserved for use as assembler temporary
2-3 v0o, vl values returned by procedures
4-17 a0-a3 first few procedure arguments
8-15, 24, 25 t0-t9 temps - can use without saving
16-23 s0-s7 temps - must save before using
26,27 k0, k1 reserved for kernel use - may change at any time
28 gp global pointer
29 sp stack pointer
30 fp or s8 frame pointer
31 ra return address from procedure

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

3b. Local variables

 If the called procedure needs to store values 1n
memory while 1t 1s working, space must be
reserved on the stack for them

* Debugging note

» compiler can often optimize so that all variables fit
1in registers and are never stored in memory

» so a memory dump may not contain all values
» use switches to turn off optimization (but ...)

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 20

3¢. Argument build area

* Our convention 1s
» caller reserves stack space for all arguments

» 16 bytes (4 words) left empty to mirror $a0-s$a3

* [f your procedure does more than one call to
other procedures, then ...

» the argument build area must be large enough for
the largest set of arguments

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 21

Using the stack pointer

* Adjust it once on entry, once on exit

» Initial adjustment should include all the space you
will need 1n this procedure

 Remember that a word 1s 4 bytes

» S0 expect to see references like 8 ($sp), 20 ($sp)

» Keep stack pointer double word aligned
» adjust by multiples of 8

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 22

4. Do the desired function

* You have saved the values of the registers that
must be preserved across the call

* The arguments are in $a0 - $a3 or on the stack

* The stack pointer points to the end of your
stack frame

e Let ‘errip

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 23

5. Make result available to caller

* Registers $v0 and $v1 are available for this
* Most procedures put a 32-bit value in $v0

* Returning the address of a variable?
» be very careful!

» your portion of the stack 1s invalid as soon as you
return

» the object must be allocated 1n ancestor’s part of
stack or globally allocated

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 24

6. Return storage resources

$sp (after addu) —>»

- argument build area

A1 (if needed)

D L L L LY
o B o o o o W N o e W
o A A o o 8 o g o B B B B
mmmmmmnﬁaﬁe&m*rhegiﬁ Y% onls ERERERTCTE
A B b S
R % 1 A %‘ﬁ.‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x
N N B S N B e S e A
B e T o s e s o e e e e e
o B o o o o W N o e W

$sp (while

o B o o o o W N o e W
R IR ELLLLLELEN
xxxxxxxxxxxx*l‘-e'c-a.*lxmva.‘r&ra\bixeﬂsmmmmmmm
B e

__"'H."'H."'H."'H."'H."'H."'H."'H."'H."'H."'H."'H."'H."'H."'H."'H."'H."'H.(\i@"'H.Hm’eid’éﬁi\h\h\h‘hﬂh‘ﬂﬂ\%ﬂh&%&%
S R R Ll " e e

T e e e e e e e e e R R
e e e e e e e e R R

executing) —>

e e e e e e e e R R
e e e e e e e e R

S N R " S

s e e e e e e ‘\'\"\‘h‘h‘ﬁ.‘h‘h‘\‘\i‘\‘ﬁ.i L e R R
P e e ""3}\- "'H."'H."'\-\.n"'e- e

T e R R e R R

e e e e e e e e R R
e e e e

<«— stack frame ———»

towards 0
|

5-Apr-2004

cse410-06-procedures-a © 2004 University of Washington

25

7. Return to point of call

* Jump through register

* The address of the instruction following the
jump and link was put in $ra when we were
called (the “link” in jump and link)

« We have carefully preserved $ra while the
procedure was executing

* So, “jr $ra” takes us right back to caller

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington

26

CSE 410 Calling Conventions

* Argument build area
» caller reserves stack space for all arguments

» 16 bytes (4 words) left empty to mirror $a0-$a3

 Called procedure adjusts stack pointer once on
entry, once on exit, in units of 8 bytes

* Registers
» not required to save and restore t0-$t9, $a0-$a3

» must save and restore $s0-s8, $ra if changed

» function results returned in $v0, $v1

5-Apr-2004 cse410-06-procedures-a © 2004 University of Washington 27

