
CSE 410 - Spring 2004

Homework 2

due on Wednesday, April 14 at 9:30 AM, at the beginning of class

47 points

Name

Student #

CSE 410 - Spring 2004 Homework 2

1

This homework is intended to help you understand the calling conventions for transferring
control to procedures and returning results from procedures.

There are two source files provided to you. There are some questions in the written section of
the homework that refer to the code as supplied, and then there are also procedures that you will
write and add to the existing skeleton code.

You will turn in this paperwork with your written answers in class on Wednesday. Also, before
class, you will turn in your source files and the log files that show how the programs operate.

Consider the program v2.s. As provided to you, this program is the beginning of a small library
of procedures for manipulating two-dimensional vectors (ie, 2-element arrays with an integer x
coordinate and an integer y component). The main procedure and the v2Set procedure are
provided; you will write v2Print, v2Add, and v2Equal as described later.

The following discussion and questions may be easier to follow if you have the file open in
Context and SPIM while looking at the sources.

The purpose of the main procedure in v2.s is to utilize the library procedures as they might be
used by any application program that was using this library. Main prints out a little header
information, and then sets up for and executes a loop over all the 2-element vectors stored in the
coords array, printing a vector, adding delta, then printing the result. Following that, it sets up
for and executes another loop over the array, this time printing out all the elements that are not
equal to the origin (0,0).

1. (2 pts) Take a close look at the main procedure. Is it a leaf procedure or a non-leaf
procedure?

2. (2 pts) The main procedure uses a stack frame. How many words are reserved for the frame?

3. This program prints out several null-terminated strings using the syscall instruction with op
code 4, print_string. Notice that the syscall instruction does not change any registers during
its execution, and so all the registers, even the temporaries like $t0 and $t1, are preserved
across system calls.

a. (2 pts) How many null-terminated strings are defined in the data section of this program?

b. (2 pts) Not including the op code in $v0, how many arguments does the print_string syscall
instruction take?

4. (2 pts) Read through the first loop in the main program. The top of the loop is at label
mainLoopA. The bottom of the loop is the bne instruction at line 95. Consider the condition
that the bne instruction is checking and notice how the values involved are calculated. Given
the data in the coords array, how many times will this loop execute?

CSE 410 - Spring 2004 Homework 2

2

5. (2 pts) In v2.s, there is a line that names the author of the program. Change it so that it has
your name instead of mine.

6. (5 pts) As provided to you, the code runs but does not produce any output because several of
the library procedures are not implemented. The first method that you should implement is
v2Print. This procedure takes one argument in $a0, the address of one 2-element vector, and
prints the vector to the console as two comma-separated numbers. In order to do this, it uses
the print_integer syscall (code 1) and the print_string syscall (code 4), and strComma, a null-
terminated string. Implement the v2Print procedure by adding the appropriate code to v2.s.

7. (5 pts) The second procedure to implement is v2Add. This procedure adds the elements of
two vectors and places the result in a third vector. The procedure takes three arguments in
$a0, $a1, and $a2. The first two arguments are the addresses of the source vectors to add,
and the third argument is the address of the vector in which to store the result of the vector
addition. Implement the v2Add procedure by adding the appropriate code to v2.s.

8. (5 pts) The last procedure to implement is v2Equal. This procedure takes two vector
arguments and compares them. If the contents are equal, then the procedure returns 1 in $v0,
if they are not equal then the procedure returns 0 in $v0. Implement the v2Equal procedure
by adding the appropriate code to v2.s.

9. After you have completed and checked out the changes described above, run the program.
The console output should look like the following (with your name instead of mine):

Author: Doug Johnson

Vector Addition

0,0 -> 3,7
10,0 -> 13,7
10,10 -> 13,17
0,10 -> 3,17

Vector Equality

10,0
10,10
0,10

Save the SPIM log file. Using the SPIM menu bar, select File -> Save Log File. Save the
log file under a meaningful name like v2-PCSpim.log so that you can turn it in along with the
v2.s source file later.

CSE 410 - Spring 2004 Homework 2

3

Now consider the program bar.s. As provided to you, the main procedure of this program loops
over a list of null-terminated strings and prints out the non-empty strings. However, in many
analysis tasks we would like to see a more general representation of the data and not the specific
characters. So your task is to add two new procedures to this program that will print a row of
hyphens "-" for each string, with as many hyphens as there are characters in the string. A line is
printed for every string, including the empty string.

There are two new aspects to this program. First of all, the data structure that it uses is an array
of string addresses. In other words, the content of array strings is a list of pointers to null-
terminated strings. Contrast this with the array coords in v2.s where the content of the array
was the actual 2-element vectors. This is a little more complex to use, but it is a very common
and useful way to manipulate strings or other large data objects.

Secondly, one of the procedures you will write is a non-leaf procedure. In contrast, all of the
procedures in v2.s were leaf procedures. Thus you will need to manage the stack pointer and
stack frame when you write printStringBars.

10. (2 pts) The primary data structure that this program uses is array strings. How many
address entries are there in the strings array (including the 0 address that terminates the
list)?

11. (2 pts) Each individual entry in the strings array is an address. How many bytes are
dedicated to a single entry in this array?

12. (2 pts) Each individual entry in a null-terminated string is a single ASCII character. How
many bytes are dedicated to a single character in one of these strings?

13. (2 pts) The stack frame that is established by the main procedure is 8 words long. In lecture,
I said that there were three reasons for using space in the stack frame: saved registers, local
variables, and argument build area. The 8 words in this stack frame are needed for two of
these three reasons. What are the two reasons that we need this stack frame?
 and .

14. (2 pts) In bar.s, there is a line that names the author of the program. Change it so that it has
your name instead of mine.

15. (5 pts) As provided to you, the program prints the strings, but it does not print the rows of
hyphens. Your task is to implement procedures printStringBars and printBar.

The printStringBars method is given an array of string addresses and loops over the array,
calling printBar for each string until it encounters a 0 address.

Since printStringBars calls printBar, it is a non-leaf procedure and it must have a stack frame
to hold the saved return address, an argument build area, and any other registers that must be
saved and restored. You can copy and paste much of the stack management code from the
main method, modifying it as needed if you use a different set of registers.

CSE 410 - Spring 2004 Homework 2

4

printStringBars loops over all of the strings in the array in a fashion very similar to the main
method. However, it does not skip empty strings. You can copy and paste much of the
looping code from the main method, with appropriate changes to account for the use of $a0
to pass the array address and to eliminate skipping over empty strings. And of course
modifying it to call printBar instead of printing the actual string.

If you implement printStringBars before printBar, you could do something very simple in
printBar just to show that it has been called and thus checkout printStringBars before moving
on to printBar.

16. (5 pts) The printBar method is given a null-terminated string and prints one row of output: a
colon character ":", followed by as many hyphens "-" as there are characters in the string,
followed by a newline character "\n". The string may be zero length (ie, the first character of
the string may be 0).

printBar prints a colon ":" character each time it is called. Then it loops over all the
individual characters of the given string, printing a hyphen "-" for each character, until it
reaches a 0 byte. Then it prints a newline character "\n" and returns to the caller.

Use the Load Byte Unsigned instruction lbu to load a byte from memory into a register in
order to check if it is a valid character or the 0 string terminator.

Since printBar is a leaf procedure you don't need a stack frame to save and restore $ra nor to
be an argument build area. If you decide that you need to save and restore registers, you can
use a stack frame.

17. After you have completed and checked out the changes described above, run the program.
The console output should look like the following (with your name instead of mine):

Author: Doug Johnson

All non-empty strings.

This is a string.
This is another string.
This is another string.
This is a string.

String bars.

:-----------------
:-----------------------
:
:-----------------------
:-----------------

Save the SPIM log file. Using the SPIM menu bar, select File -> Save Log File. Save the
log file under a meaningful name like bar-PCSpim.log so that you can turn it in along with
the bar.s source file.

