
CSE 410 Project 1 Page 1 of 6

CSE 410
Programming Project 1

Assigned: Wednesday, October 10, 2001
Due: Wednesday, October 17, 2001

Introduction

This first project includes two programs.

Adder.  The first program requires that you develop a procedure to accept a string of
characters representing a number, decode it, and return the actual value of the number.
The main program calls your procedure to add together the two numbers provided on the
command line.

Slicer. The second program requires a procedure to take a pointer to a bit string, and a
center bit number, copy the 3 bits centered on the center bit, and return those bits to the
caller.  The main program calls your procedure to slice out the 3 bits specified on the
command line.

The goal of writing these programs is to help you learn about passing arguments to
programs and procedures and using the values they provide, while developing procedures
that will be useful in the second and third projects.

For both programs, skeleton code is provided (on the class assignments web page) that
reads arguments from the command line and sets them up for your procedure.  The
comment header for your procedure is also included in the skeleton.  You just have to
write the code to implement the procedure!

The grading for this project is as follows:

Adder program: 2 points
Hex decode extension: 1 point
Questions: 2 points

Slicer program: 2 points
Specify bit string extension: 1 point
Questions: 2 points

Total: 10 points * 5 = 50 points for the project

A Note about operating PCSpim

PCSpim does not rebuild the argument list in memory if you run it twice in a row, even
though you have specified new arguments to the program.  You must reload your
program before each run or you will not get the results you expect!



CSE 410 Project 1 Page 2 of 6

Program: Adder

Your program will read two numbers (decimal) from its command line, and print out a
message indicating their sum.  For example, if the input to your program is 13 27, then
your program's output should be:

13 + 27 = 40

What follows is a brief summary of how command line arguments are made available to
a program when that program is first run, followed by a description of how to convert an
integer from its textual representation to a representation the machine can perform
arithmetic functions on.

Command Line Arguments

If you have some familiarity with C/C++ style command line processing, you will
recognize that this is very similar.

When the program starts, argc (the number of arguments) is stored in register a0, while
the address of argv (the array of pointers to the string arguments) is stored in a1.

For example:
$a0    argc  2        a number
$a1    argv  0x7FFFEDEC       the address of argv

Since argv is an array, $a1 actually holds a pointer to the start of the memory holding that
array.  In our example, argv[0] is stored at 0x7FFFEDEC.  Each element of the argv array
is a pointer to a null-terminated character string.  So in fact, argv[0] is also an address, it
is the address of the beginning of the first string argument that you entered on the
command line.

argv[0] 0x7FFFEE45 the address of the beginning of the null-terminated string holding
the first command line argument

In pointer terms, you must dereference the value stored in $a1 in order to get the
beginning of the array of pointers to the actual data.  To get the first argument you must
first dereference $a1, storing that value (in $t0, for example), then you must dereference
that value ($t0), giving you the start of the string.

The pointer to the second argument (argv[1]) is stored in the next word after the first
argument (argv[0]).  In our example, you would need to add 4 to the value in $t0 to get
the next word, which you would then derefernce to get the start of the second argument.

A more pictorial description is:

$a0     argument count



CSE 410 Project 1 Page 3 of 6

$a1     pointer to start of array of argument (0x7FFFEDEC in this example)

0x7FFFEDEC pointer to start of first argument (0x7FFFEE45 in this example)
0x7FFFEDF0 pointer to start of second argument (e.g., 0x7FFFEE49)
0x7FFFEDF4 pointer to start of third argument (e.g., 0x7FFFEE51)
... for as many arguments as there are

0x7FFFEE45 the first character in the first argument
0x7FFFEE46 the second character in the first argument
0x7FFFEE47 the third character in the first argument
0x7FFFEE48 a zero byte, which terminates the string

0x7FFFEE49 the first character in the second argument
0x7FFFEE50 a zero byte, which terminates the string
...

The skeleton program that we have provided contains all the argument selecting code you
need for the basic assignment.  If you extend the program by adding additional arguments
or options, you will need to extend this part of the code to check for and obtain those
command line arguments.

Converting a textual representation of a number to a machine representation

This only describes converting from a number in base 10 (decimal) to a number in base 2
(binary).  In order to deal with numbers in hexidecimal, the process is very similar, and is
an extension to the basic routine.  Note that you can tell a number is in hex if it starts with
0x (a zero followed by an 'x')

The basic idea is to move character by character from left to right through the number
keeping a running total.  At each step, you must determine the decimal value of the
character in question, then multiply your total by the number base (10 in the case of
decimal) and add your latest digit to the total.

For example, say the character string we have been given is "324".  This will be
represented in memory as four consecutive bytes: '3', '2', '4', null (ie, zero).

Start by setting the current total to 0
LoopLabel:
See if we have a valid digit

If the byte is zero, we are done because the string is null
terminated.  Check for a valid digit by subtracting the
ascii value of '0' (which is 48 decimal) from the character
in hand.  Remember that characters are only a single byte.
If the result of the subtraction is between 0 and 9 we are



CSE 410 Project 1 Page 4 of 6

good to go, and we now have the numeric value of this
character

Multiply our current total (0) by the base (10)
(resulting in 0 the first time through the loop)

Add the result of the subtraction (3) to the total (0)
(resulting in 3 the first time through the loop)

Go to LoopLabel

With our example of 324, execution would continue as follows:

We see if the next digit is valid. It is.
We multiply our total (3) by the base (10) -> 30
We add our digit (2) to the total (30) -> 32
We loop

We see if the next digit is valid. It is.
We multiply our total (32) by the base (10) -> 320
We add our digit (4) to the total (320) -> 324
We loop

We see that the next digit is not valid, and we quit - we got the number!!

Use the MIPS instruction "mul $dest, $src1, $src2" to do the multiplication.

Extension: Hex decode

In order to extend this procedure to handle hex values, you have to do a little bit of extra
work.

First, if a string represents a hex number, it will start with 0x.  You need to recognize
those characters if they are present and set the appropriate flags or values so that you
decode the number using base 16 instead of base 10.

Second, checking for a valid digit is a little more complex because the hex digits include
0 through 9 and also "A" through "F" (and also "a" through "f").

Third, the number base that you are multiplying the current total by is now 16 instead of
10, as it was when you were decoding a decimal number.



CSE 410 Project 1 Page 5 of 6

Program: Slicer

Your program will read two numbers (decimal) from its command line, and use those
numbers to control a new procedure that isolates 3 bits from a bit string in memory and
prints them out.

You should copy the decode_int procedure that you wrote for the adder, and include it in
the source file for the slicer too.

The program takes two arguments

centerbitnumber:  The number of the center bit of three bits in the bit string.  0..31

edgecontrol:  When centerbitnumber specifies one of the edge bits of the entire bit string,
edgecontrol determines what to substitute for the missing bit to the right or left.  0 or 1.

If you want to extend the program, you could allow for an optional third hex argument to
specify the bitstring, instead of using the default string.  You could also extend it so that
the bit strings can be more than one word long.

A "bitstring" is just the contents of memory, considered bit by bit.  For example, if the
contents of memory at address 0x7FFFE040 are 0x8000000F, then the binary
representation of those 32 bits is

1000 0000 0000 0000 0000 0000 0000 1111

and one would say that the 32-bit bitstring at that address starts with four 1s, followed by
twenty seven 0s, followed by a single 1.

The bitSlice3 procedure that you will write for this program takes a value for the center
bit, and then isolates and returns that bit and the bits on either side of it.

So, for the example word above, if the center bit was 3, then the result would be 011, and
so on.

centerbit bitstring result
3 1000 0000 0000 0000 0000 0000 0000 1111 011
4 1000 0000 0000 0000 0000 0000 0000 1111 001

15 1000 0000 0000 0000 0000 0000 0000 1111 000
30 1000 0000 0000 0000 0000 0000 0000 1111 100

One detail that needs to be taken care of is what happens at the edges.  Obviously if you
specify 0 or 31 as the center bit, there is a missing bit when you are trying to select the
bits on either side.  The edgecontrol parameter is supplied for this situation.  If edge



CSE 410 Project 1 Page 6 of 6

control is 0, you substitute a 0 for the missing bit, if edgecontrol is 1,you substitute a 1
for the missing bit.

edge
centerbit control bitstring result

0 0 1000 0000 0000 0000 0000 0000 0000 1111 110
0 1 1000 0000 0000 0000 0000 0000 0000 1111 111

31 0 1000 0000 0000 0000 0000 0000 0000 1111 010
31 1 1000 0000 0000 0000 0000 0000 0000 1111 110

Extension: Specify bit string

The extension for this program is to be able to specify the bit string to be used, rather
than just using a value hard coded into the program as it is in the skeleton.

One relatively easy way to do this is to add an optional third parameter to the command
line.  This parameter allows the user to specify a bit string up to 32 bits long using a hex
value.  This should be a hex value, since it is extremely difficult to recognize the bit
pattern that will result from specifying a decimal number in all but a few special cases.

Then apply the same bitSlice3 procedure to the user-supplied value as you did to the hard
coded default value.

If you find all this too easy, there are lots of interesting extensions beyond this.  You
could allow bit strings longer than one word, either on the command line or in the code.
You could supply edge control that uses the bit at the other end of the bitstring for the
substitution instead of a fixed value.  You could allow variable length slices.  You could
build a test harness that loops through all possible center bits for a variety of bit strings,
and compares the results against a table of expected results.  And so on.


