
File Systems

CSE 410 - Computer Systems

December 7, 2001

7-Dec-01 CSE 410 - File Systems 2

Readings and References

• Reading
› Chapter 11, Chapter 12 through 12.6, Operating System Concepts,

Silberschatz, Galvin, and Gagne

• Other References
› Chapter 10, Inside Microsoft Windows 2000, Third Edition,

Solomon and Russinovich

7-Dec-01 CSE 410 - File Systems 3

Files

• A user-level abstraction for “a collection of bytes
in (non-volatile) storage”

• Files have:
› Name

› Type (implicit or explicit)

› Location - which device, where on that device

› Size (and possibly maximum size)

› Protection - who may read and write this?

› Time, date, and user identification

7-Dec-01 CSE 410 - File Systems 4

Disk File Structure

• Disk block is fixed-size contiguous group of disk sectors
• Think of a file as simply a sequence of disk blocks

› may not be contiguous

• Directory is a file that points to other files or directories
• File system issues

› how many sectors per block?
› how do you keep track of which blocks a file is using?
› how do you keep track of which blocks are free?
› most files are small, but most I/O is to big files. Must optimize

both

7-Dec-01 CSE 410 - File Systems 5

File Operations

• File creation
› make room for the file
› enter the new file into the directory

• Writing a file
› specify the file and the data to write to the file
› OS keeps track of your location in the file
› successive writes are placed one after the other

in the file

7-Dec-01 CSE 410 - File Systems 6

More File Operations

• Reading a file
› specify the file and the buffer into which the data

should be read

› OS keeps track of your location in the file

› Location pointer is often shared between read and write
operations

• Repositioning within a file
› Changes the location pointer

› Often called “seeking”

› No actual I/O

7-Dec-01 CSE 410 - File Systems 7

Yet More File Operations

• Deleting a file
› Find the directory entry and delete it

› Mark the space used by the file as free

› Don’t actually “erase” the file

• Truncating a file
› Throw away all the data in the file

› Keep the attribute information

7-Dec-01 CSE 410 - File Systems 8

Opening and Closing Files

• The above six operations are sufficient

• But we also have the notion of the open file

• The open system call tells the OS that the
specified file will be used by several operations
› user need not specify name each time

› OS need not search directories each time

› Location pointers, etc. need only be maintained for
open files

7-Dec-01 CSE 410 - File Systems 9

Volumes and Directories

• A volume is a logical disk
› there may be more than one

volume per physical disk

› there may be more than one
physical disk per volume

• The directory lists all of the files
in the volume

Directory

Files

Volume

7-Dec-01 CSE 410 - File Systems 10

Single-Level Directories

• In a single-level
directory
structure, the
directory lists all
files and their
offsets

• Like a table of
contents

notes410 5
Autumn01 12
todo 55
ideas 59
notes410

Autumn01

todo
ideas

7-Dec-01 CSE 410 - File Systems 11

Two-Level Directories

• Single-level directories suffer from name
collision
› If you and I both name a file “prog1.c” then one

file will overwrite the other

• Split up the space into top-level directories
for each user

• Keep a directory for each user’s files, and a
directory of the user directories

7-Dec-01 CSE 410 - File Systems 12

Tree-Structured Directories

• Let directories contain subdirectories
• Arrange files in a tree
• To name a file, specify a list of directories

from the top down, plus the name of the file
itself
› This is called a path name

• A path beginning at the root is an absolute
path; if part of the path is implied, it’s a
relative path

7-Dec-01 CSE 410 - File Systems 13

The Current Directory

• Set the current directory with setcwd()
system call

• All future open() calls interpret path names
relative to the current directory
› Saves on directory lookups

• Initial current directory is often set at login
time, to the user’s home directory

7-Dec-01 CSE 410 - File Systems 14

File Protection

• Protection allows the owner of a file or
directory to define who may do what to that
file or directory
› The who is restricted by user or group

• usually use Access Control Lists (ACLs)

› The what is restricted by type of access:
• read, write, execute

7-Dec-01 CSE 410 - File Systems 15

Disk Block Allocation

• The basic unit of storage on a disk is a block
› One or more disk sectors (which are usually 512 bytes)

• Each file is stored in one or more blocks

• For simplicity, blocks are not split between files;
leftover space at the end of a block is wasted
› internal fragmentation

• Allocation strategy: When creating or enlarging a
file, which disk block(s) should be allocated?

7-Dec-01 CSE 410 - File Systems 16

Contiguous Allocation

• In contiguous allocation, a file gets blocks
b, b+1, b+2, ...

• Dir entry stores starting location, length

• Two blocks with sequential numbers are
very likely to be in the same track, so no
head movement is required

• What’s the problem?

7-Dec-01 CSE 410 - File Systems 17

Contiguous Allocation

• Allocating blocks on one track or adjacent tracks
› makes accessing the file fast

• Random access is easy because offsets are easy to
calculate

• Directory stores location of first sector and length

Pain to make files bigger.

Often, must copy whole files.

7-Dec-01 CSE 410 - File Systems 18

Linked allocation

• In linked allocation, a file gets a linked list
of disk blocks

• Dir entry stores starting location

• Each block contains data and a pointer to
the next block

7-Dec-01 CSE 410 - File Systems 19

Linked Allocation

• Each block contains a pointer to the next block in
the file (the last block is NULL)

• Directory stores location of first and last sectors

• Advantages
› easy to grow files

• Disadvantages
› poor random access

› pay seek penalty many times

› link overhead
7-Dec-01 CSE 410 - File Systems 20

Indexed allocation

• In indexed allocation, the file gets a list of
disk blocks

• An index block contains the block list

7-Dec-01 CSE 410 - File Systems 21

Indexed Allocation

• An array lists where each block of the file is
stored

• Try to allocate blocks contiguously

• But can allocate blocks anywhere

• Issues
› Where is this array list stored?

› Is the array fixed size?

7-Dec-01 CSE 410 - File Systems 22

Unix Inodes

• In Unix this list of blocks is stored in an inode
› for each file a directory stores the file name and an inode

• Some entries point directly to a file block
› these are sufficient for small files (up to 1KB)

• Some entries point to a list of block entries
› these are sufficient for medium sized files (up to 256KB)

• Some entries point to lists of lists of block entries
› these are sufficient for large files (up to 64MB)

• Some entries point to lists of lists of lists of block entries
› these are sufficient for humongous files (up to 16GB)

7-Dec-01 CSE 410 - File Systems 23

Inode Example

direct

singly indirect

doubly indirect

triply-indirect

data

data

data

data

data

data

data

data

data

data

data

data

data

data

7-Dec-01 CSE 410 - File Systems 24

Free Space

• How do you find free disk blocks?
• Bitmap: One long string of bits represents

the disk, one bit per block
• Linked list: each free block points to the

next one (slow!)
• Grouping: list free blocks in the first free

block
• Counting: keep a list of streaks of free

blocks and their lengths

7-Dec-01 CSE 410 - File Systems 25

Sectors per Block

• What if there are many sectors per block
› a file might fit in a single block (faster access)

› internal fragmentation

• What if there is only one sector per block
› increases access time because files are spread over

multiple blocks

7-Dec-01 CSE 410 - File Systems 26

Win2K File System

• The root directory of a volume is stored at a fixed location
so you always know where to start

• The MFT (master file table) stores information about each
file

• Each entry is 1KB and stores
› name, attribute, security info, data
› a small file’s data fits in the MFT entry (don’t even need to allocate

another block)
› or data can be list of block ranges (similar to inodes)

• A directory is like any other file
› it stores the MFT numbers of the files or subdirectories in that

directory

7-Dec-01 CSE 410 - File Systems 27

Making Disks Faster

• What if a program reads just one value from
a file and does some processing?

• What if a program writes results to a file in
the same way?

• Ways to make disks faster
› caching
› minimize seeks

7-Dec-01 CSE 410 - File Systems 28

Disk Buffers

• Most files are read sequentially

• When one block is read, the disk reads the
blocks that follow it because they will likely
be read too

• These blocks are stored in a memory buffer
on the disk

• Reads to the next blocks don’t have to pay
seek and rotational delay

7-Dec-01 CSE 410 - File Systems 29

File Caches

• File accesses exhibit locality just like everything
else

• Therefore cache frequently-used file blocks in
main memory
› modern file systems wouldn't work without this

• It's interesting that we use memory to store
frequently-used disk blocks and disk to store
infrequently used memory pages

7-Dec-01 CSE 410 - File Systems 30

File Cache

• A portion of memory is devoted to
storing frequently used files

• The amount of memory changes based
on the workload
› if more files are being accessed then use

more memory

• Virtual pages that are evicted from
physical memory often go to the file
cache before the page file
› gives a virtual page another chance

› doesn't require a copy because file cache can
be stored anywhere in memory

Memory

Virtual memory
pages

File cache
Frequently used
file blocks

7-Dec-01 CSE 410 - File Systems 31

Disk Layout

• Prevent fragmentation
› allocate files to contiguous blocks

• Put directories and their files (and the files'
inodes) near each other
› improves locality, reduce seek time

• Put commonly used

 directories in center track

Directory on same track
as files in the directory

7-Dec-01 CSE 410 - File Systems 32

Disk Scheduling

• The disk has requests to read tracks
› 0, 10, 4, 7 (0 is on the outside)

• If the disk head is at track 1, how should we
order these reads to minimize how far the disk
head moves?

7-Dec-01 CSE 410 - File Systems 33

Disk Scheduling

• FIFO--First In First Out
› lots of back and forth seeking

• SSTF--Shortest Seek Time First
› pick the request closest to the disk head
› starvation is an issue

• SCAN, C-SCAN
› also known as an elevator algorithm
› take the closest request in the direction of travel
› head moves back and forth from edge to edge

