
Virtual Memory

CSE 410 - Computer Systems

December 5, 2001

5-Dec-01 CSE 410 - Virtual Memory 2

Readings and References

• Reading
› Chapter 10 through 10.7.1, Operating System Concepts,

Silberschatz, Galvin, and Gagne

• Other References
› Chapter 7, Inside Microsoft Windows 2000, Third Edition,

Solomon and Russinovich

5-Dec-01 CSE 410 - Virtual Memory 3

Virtual Memory

• Virtual memory paging to disk
› manage memory as though we always had enough

› if more is needed, use disk as backup storage

• Demand Paging
› load program pages in to memory as needed

• Another level of the storage hierarchy
› Main memory is a cache

› Disk space is the backing store
5-Dec-01 CSE 410 - Virtual Memory 4

Virtual Memory

• Page table entry can
point to a PPN or a
location on disk (offset
into page file)

• A page on disk is
swapped back in when
it is referenced
› page fault

VPN
0
1
2
3
4
5
6
7
8
9
10

0
1
2
3
4
5
6

memory

0
1
2
3
4
5
6

page file

5-Dec-01 CSE 410 - Virtual Memory 5

Demand Paging

• As a program runs, the memory pages that it
needs may or may not be in memory when
it needs them
› if in memory, execution proceeds

› if not in memory, page is read in from disk and
stored in memory

• If desired address is not in memory, the
result is a page fault

5-Dec-01 CSE 410 - Virtual Memory 6

A reference to memory location X

• MMU: Is X's VPN in the Translation Lookaside Buffer?
› Yes => get data from cache or memory. Done.
› No => Trap to OS to load X's VPN/PPN into the TLB

• OS: Is X's VP actually in physical memory?
› Yes => replace a TLB entry with X's VPN/PPN. Return control to

original thread and restart instruction. Done.
› No => must load the VP from disk

• OS: replace a current page in memory with X’s page from disk
› pick a page to replace, write it back to disk if dirty

› load X's VP from disk into physical memory

› Replace the TLB entry with X's VPN/PPN.

› Return control to original thread and restart instruction. Done!

Page Fault Example
VPN
0
1
2
3
4
5
6
7
8
9
10

0
1
2
3
4
5
6

memory

0
1
2
3
4
5
6

page file

VPN
0
1
2
3
4
5
6
7
8
9
10

0
1
2
3
4
5
6

memory

0
1
2
3
4
5
6

page file

VPN
0
1
2
3
4
5
6
7
8
9
10

0
1
2
3
4
5
6

memory

0
1
2
3
4
5
6

page file

Reference to VPN 10
causes a page fault
because it is not in memory.

PPN 6 has not been
used recently. Write it
to the page file.

Read VPN 10 from the
page file into physical
memory at PPN 6.

5-Dec-01 CSE 410 - Virtual Memory 8

Virtual Memory & Memory Caches

• Physical memory is a cache of the page file

• Many of the same concepts we learned with
memory caches apply to virtual memory
› both work because of locality

› dirty bits prevent pages from always being written back

• Some implementation aspects are different
› Virtual Memory is usually fully associative with

complex replacement algorithms because a page fault is
so expensive (at least one disk read is required)

5-Dec-01 CSE 410 - Virtual Memory 9

Replacement Algorithms

• FIFO - First In, First Out
› throw out the oldest page

› often throws out frequently used pages

• RANDOM - toss a random page
› works okay, but not good enough

• OPT or MIN - toss the one you won’t need
› pick page that won't be used for the longest time

› provably optimal, but impossible to implement
5-Dec-01 CSE 410 - Virtual Memory 10

Approximations to MIN

• LRU - Least Recently Used
› remember temporal locality?

• if we have used a page recently, we probably will
use it again in the near future

› LRU is hard to implement exactly since there is
significant record keeping overhead

• CLOCK - approximation of LRU
› and LRU is an approximation of MIN

5-Dec-01 CSE 410 - Virtual Memory 11

Perfect LRU

• Least Recently Used
› timestamp each page on every reference

› on page fault, find oldest page

› can keep a queue ordered by time of reference
• but that requires updating the queue every reference

› too much overhead per memory reference

5-Dec-01 CSE 410 - Virtual Memory 12

LRU Approximation: Clock

• Clock algorithm
› replace an old page, not necessarily the oldest page

• Keep a reference bit for every physical page
› memory hardware sets the bit on every reference

› bit isn't set => page not used since bit last cleared

• Maintain a “next victim” pointer
› can think of it as a clock hand, iterating over the

collection of physical pages

5-Dec-01 CSE 410 - Virtual Memory 13

Tick, tick, ...

• On page fault
› advance the victim pointer to the next page

› check state of the reference bit

› If used, clear the bit and go to next page
• this page has been used since the last time we

looked. Clear the usage indicator and move on.

› If not used, select this page as the victim
• this page has not been used since we last looked

• replace it with a new page from disk

Find a victim

0

1

1

11

0

1

0

0

1

2

34

5

6

7

0

1

1

00

0

1

0

0

1

2

34

5

6

7

0

1

0

00

0

1

0

0

1

2

34

5

6

7

0

0

0

00

0

1

0

0

1

2

34

5

6

7

1

0

0

00

0

1

0

0

1

2

34

5

6

7

advance; PPN 0 has
been used; clear and
advance

PPN 1 has been used;
clear and advance

PPN 2 has been used;
clear and advance

PPN 3 has been not
been used; replace
and set use bit

5-Dec-01 CSE 410 - Virtual Memory 15

Clock Questions

• Will Clock always find a page to replace?
› at worst it will clear all the reference bits,

finally coming around to the oldest page

• If the hand is moving slowly?
› not many page faults

• If the hand is moving quickly?
› many page faults

› lots of reference bits set
5-Dec-01 CSE 410 - Virtual Memory 16

Thrashing

• Thrashing occurs when pages are tossed out,
but are needed again right away
› listen to the hard drive grind

• Example: a program touches 50 pages often
but only 40 physical pages

• What happens to performance?
› enough memory 2 ns/ref (most refs hit in cache)

› not enough memory 2 ms/ref (page faults every
few instructions)

• Very common with shared machines

throughput

number of processes

5-Dec-01 CSE 410 - Virtual Memory 17

Thrashing Solutions

• If one job causes thrashing
› rewrite program to have better locality of reference

• If multiple jobs cause thrashing
› only run as many processes as can fit in memory

• Big red button
› swap out some memory hogs entirely

• Buy more memory

5-Dec-01 CSE 410 - Virtual Memory 18

Working Set

• The working set of a process is the set of pages
that it is actually using
› set of pages a job has used in the last T seconds

› usually much smaller than the amount it might use

• If working set fits in memory process won't thrash

• Why do we adjust the working set size?
› too big => inefficient because programs keep pages in

memory that they are not using very often

› too small => thrashing results because programs are
losing pages that they are about to use

5-Dec-01 CSE 410 - Virtual Memory 19

Win2K Memory Management

• Win2K Pro/Server/DataCenter
› can manage 4 to 64GB physical memory

› Virtual address is 2GB user, 2GB system

• Some services of memory manager
› allocate / free virtual memory

› share memory between processes

› map large files into memory

› lock pages in memory
5-Dec-01 CSE 410 - Virtual Memory 20

W2K Working Set

• Subset of virtual pages resident in physical
memory is the current working set

• W2K allows working set to grow
› demand paging causes read from disk

› reads in clusters of pages on a fault - 8 pages
for code, 4 pages for data

• Working set is trimmed as necessary
› using version of the clock algorithm

5-Dec-01 CSE 410 - Virtual Memory 21

Managing allocations

• A process reserves address space
› tell the OS that we will need this memory space

› OS builds Virtual Address Descriptors but does
not build page tables

• then commits pages in the address space
› room exists for the pages in memory or on disk

› OS builds page table for committed page when
a page fault occurs

5-Dec-01 CSE 410 - Virtual Memory 22

Example: Stack Allocation

• Stack area is reserved when thread starts
› generally 1MB, although this can be changed at

thread creation or with a linker switch

› Just one page of 4KB is committed

› the following page is marked PAGE_GUARD

› if page fault, then one more page is committed
and the stack is allowed to grow another 4KB
until it happens again

currently committed

physical memory
plus page file

installed memory

Total committed
memory greater
than installed
physical memory

5-Dec-01 CSE 410 - Virtual Memory 24

Virtual Address Descriptors

Range: 20000000-2000FFFF
Protect: R/W
Inherit: Yes

Range: 00002000-0000FFFF
Protect: Read Only
Inherit: No

Range: 4E000000-4F000000
Protect: Copy-on-write
Inherit: Yes

binary tree of descriptors
stores information about the
reserved range of addresses

Two-level Page Tables

table #

Page directory index Page table index byte offset
10 bits 10 bits 12 bits

Page Directory
(1024 entries)

PFN

1024 Page Tables
(1024 entries per table)

Physical Memory

4KB page

32-bit virtual address

5-Dec-01 CSE 410 - Virtual Memory 26

Shared Memory

• “Section Objects” or file mapping objects

• Map portion of address space to common
physical pages
› generally backed up with paging to disk

• page file backed - shared memory

• data file backed - memory mapped file, can
be shared

5-Dec-01 CSE 410 - Virtual Memory 27

Address Windowing Extensions

• What do you do when 2GB is too small?

• Allocate huge chunks of physical memory

• Designate some virtual pages that are a
window into that physical memory

• Remap the virtual pages to point to different
parts of the physical memory as needed

• Useful for large database applications, etc

AWE mapping

AWE window

0

2 GB

4 GB

OS

App

Server Application
Virtual Address Space

Data pages

0

64 GB

Physical Memory

Data pages

Data pages

Data pages

