Virtual Memory

CSE 410 - Computer Systems
December 5, 2001

Readings and References

* Reading

> Chapter 10 through 10.7.1, Operating System Concepts,
Silberschatz, Galvin, and Gagne

e Other References

> Chapter 7, Inside Microsoft Windows 2000, Third Edition,
Solomon and Russinovich

5-Dec-01 CSE 410 - Virtual Memory

Virtual Memory

 Virtua memory paging to disk
> manage memory as though we always had enough
> 1f more is needed, use disk as backup storage
 Demand Paging
> |oad program pages in to memory as needed
« Another level of the storage hierarchy

> Main memory Is acache
> Disk gpace is the backing store

5-Dec-01 CSE 410 - Virtual Memory 3

Virtual Memory

VPN memaory
0 0
. Da_ge table entry can T T
noint to a PPN or a 2 \ 2
ocation on disk (offset j NV
Into pagefile) - 2
 Apageondiskis 6
swapped back in when ! page file
. 8
It is referenced 9 <13
> page fault 10 >
3
4
_ 5
5-Dec-01 CSE 410 - Virtual Memory 6

Demand Paging

e Asajprogram runs, the memory pages that it
needs may or may not be in memory when
It needs them
> 1f In memory, execution proceeds

> 1f not In memory, pageisread in from disk and
stored in memory

 |If desired addressis not in memory, the
result Is a page fault

5-Dec-01 CSE 410 - Virtual Memory 5

A reference to memory location X

e« MMU: IsX'sVPN inthe Trandation Lookaside Buffer?

> Yes=> get datafrom cache or memory. Done.
> No=>Trapto OStoload X'sVPN/PPN intothe TLB
¢ OS: IsX'sVPactualy in physical memory?
> Yes=>replaceaTLB entry with X's VPN/PPN. Return control to
original thread and restart instruction. Done.
> No =>must load the VP from disk

* OS: replace a current page in memory with X’ s page from disk
> pick apageto replace, write it back to disk if dirty
> load X's VP from disk into physical memory
> Replace the TLB entry with X's VPN/PPN.

> Return control to original thread and restart instruction. Done!
5-Dec-01 CSE 410 - Virtual Memory 6

Page Fault Example

VPN memory VPN memory VPN memory
0 0 0) 0 0) 0)
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
S))
5 5 |\ 5
. 6 = K6 2 6
7 age file /! page file /! page file
8 8 - 8
0 0 0
> 1 : 1 = 1
10 5 10 > 10 5
3 3 3
4 4 4
5 5 5
6 6 6
Reference to VPN 10 PPN 6 has not been Read VPN 10 from the
causes a page fault used recently. Write it page file into physical

because it is not in memory. to the page file. memory at PPN 6.

Virtual Memory & Memory Caches

e Physical memory is acache of the pagefile

« Many of the same concepts we learned with
memory caches apply to virtual memory
> both work because of locality
> dirty bits prevent pages from always being written back

e Some implementation aspects are different

> Virtual Memory is usually fully associative with
complex replacement algorithms because a page fault is
S0 expensive (at least one disk read is required)

5-Dec-01 CSE 410 - Virtual Memory 8

Replacement Algorithms

e FIFO - First In, First Out

> throw out the oldest page

> often throws out frequently used pages
* RANDOM - toss arandom page

> works okay, but not good enough

e OPT or MIN - toss the one you won’t need
> pick page that won't be used for the longest time
> provably optimal, but impossible to implement

5-Dec-01 CSE 410 - Virtual Memory 9

Approximationsto MIN

 LRU - Least Recently Used

> remember temporal locality?

* If we have used a page recently, we probably will
use it again in the near future

> LRU Is hard to implement exactly sincethereis
significant record keeping overhead

« CLOCK - approximation of LRU
> and LRU is an approximation of MIN

5-Dec-01 CSE 410 - Virtual Memory 10

Perfect LRU

e Least Recently Used
> timestamp each page on every reference
> on page fault, find oldest page

> can keep a queue ordered by time of reference
* but that requires updating the queue every reference

> t00 much overhead per memory reference

5-Dec-01 CSE 410 - Virtual Memory 11

LRU Approximation: Clock

* Clock algorithm

> replace an old page, not necessarily the oldest page
o Keep areference bit for every physical page

> memory hardware sets the bit on every reference

> bit isn't set => page not used since bit |ast cleared
 Maintain a“next victim” pointer

> can think of it as aclock hand, iterating over the
collection of physical pages

5-Dec-01 CSE 410 - Virtual Memory 12

Tick, tick, ...

e On page fault
> advance the victim pointer to the next page
check state of the reference bit

If used, clear the bit and go to next page
« this page has been used since the last time we
looked. Clear the usage indicator and move on.
If not used, select this page as the victim
« this page has not been used since we last |ooked

* replace it with a new page from disk
5-Dec-01 CSE 410 - Virtual Memory

\ %

A%

\ %

13

Find avictim

advance; PPN 0 has PPN 1 has been used:; PPN 2 has been used:
been used: clear and clear and advance clear and advance
advance

1

2

PPN 3 has been not
been used; replace
and set use bit

Clock Questions

 Will Clock always find a page to replace?

> at worst it will clear all the reference bits,
finally coming around to the oldest page

e If the hand Is moving slowly?
> not many page faults

e |If the hand is moving quickly?
> many page faults
> lots of reference bits set

5-Dec-01 CSE 410 - Virtual Memory

15

Thrasning

* Thrashing occurs when pages are tossed out,
but are needed again right away
> listen to the hard drive grind

o Example: aprogram touches 50 pages often
but only 40 physical pages

throughput
* What happens to performance? IR

> enough memory 2 ns/ref (most refs hit in cache)

> not enough memory 2 ms/ref (page faults every number of processes
few instructions)

* Very common with shared machines

5-Dec-01 CSE 410 - Virtual Memory 16

Thrashing Solutions

If one job causes thrashing
> rewrite program to have better locality of reference

If multiple jobs cause thrashing
> only run as many processes as can fit in memory

Big red button
> SWap out some memory hogs entirely

Buy more memory

5-Dec-01 CSE 410 - Virtual Memory 17

Working Set

 Theworking set of aprocessisthe set of pages
that it isactually using
> set of pagesajob hasused inthelast T seconds
> usually much smaller than the amount it might use

 |f working set fits in memory process won't thrash

 Why do we adjust the working set size?

> too big => inefficient because programs keep pagesin
memory that they are not using very often

> too small => thrashing results because programs are
losing pages that they are about to use

5-Dec-01 CSE 410 - Virtual Memory 18

WIin2K Memory Management

e WIin2K Pro/Server/DataCenter

> can manage 4 to 64GB physical memory
> Virtual addressis 2GB user, 2GB system

e SOome services of memory manager
> alocate/ free virtual memory
> share memory between processes
> map large files into memory
> lock pages in memory

5-Dec-01 CSE 410 - Virtual Memory

19

W2K Working Set

o Subset of virtual pages resident in physical
memory Is the current working set

o W2K alowsworking set to grow
> demand paging causes read from disk

> readsin clusters of pages on afault - 8 pages
for code, 4 pages for data

« \Working set is trimmed as necessary
> using version of the clock algorithm

5-Dec-01 CSE 410 - Virtual Memory

20

Managing allocations

» A process reserves address space
> tell the OS that we will need this memory space

> OS builds Virtual Address Descriptors but does
not build page tables

 then commits pages in the address space
> room exists for the pages in memory or on disk

> OS builds page table for committed page when
a page fault occurs

5-Dec-01 CSE 410 - Virtual Memory 21

Example: Stack Allocation

e Stack areaisreserved when thread starts

> generally 1IMB, although this can be changed at
thread creation or with alinker switch

> Just one page of 4KB is committed
> the following page is marked PAGE_ GUARD

> 1f page fault, then one more page is committed
and the stack 1s allowed to grow another 4KB
until it happens again

5-Dec-01 CSE 410 - Virtual Memory 22

File ©pltions Yiew Help

Total committed
memory greater

than installed
phyS| Cal memory MEM Usage Mermory Usage Hiskory
clb (55 g
installed memory
Tokals Phvsical Mernary (k)
Handles 4223 Tokal 196080
Threads 240 A ailable 7452
Processes a7 Syskerm Cache 14416
currently committed !\Cnmmit _harge (k) Eernel Memary (K)
Taokal 206196 Tokal 24944
Lirik 472144 Paged 21065
physca| memory Peak, 206476 NDI’II:IEII;IE!E' 3876
plus pagefile

=10 %]

Processes: 37 _PU Usage: 1% Mem Usage: 206196k | 472144k

Virtual Address Descriptors

binary tree of descriptors

stores information about the
reserved range of addresses

Rl

Range:
Protect: RI'W
| nherit: Yes

20000000- 2000FFFF

e

Range: 00002000-
Protect: Read Only
| nherit: No

N

OOO0OFFFF

5-Dec-01

Range: 4E000000- 4F000000
Protect: Copy-on-wite

CSE 410 - Virtual Memory

| nherit: Yes
24

Two-level Page Tables

32-bit virtual

addr ess

\,

Page directory index || Page tableindex byte offset
/ 10 bits / 10 bits 12 bits
I
I
PFN
table #
Page Directory 1024 Page Tables
(1024 entries) (1024 entries per table)

\ | 4KB page

Physical Memory

Shared Memory

e “Section Objects’ or file mapping objects
* Map portion of address space to common
physical pages
> generally backed up with paging to disk
 page file backed - shared memory

 datafile backed - memory mapped file, can
be shared

5-Dec-01 CSE 410 - Virtual Memory 26

Address Windowing Extensions

* What do you do when 2GB istoo small?
 Allocate huge chunks of physical memory

e Designate some virtual pagesthat are a
window into that physical memory

 Remap the virtual pages to point to different
parts of the physical memory as needed

o Useful for large database applications, etc

5-Dec-01 CSE 410 - Virtual Memory 27

64 GB
AWE mapping Dat a pages
4 GB
oS
Dat a pages
2 GB Dat a pages
App v
AVE w ndow Dat a pages
0 0

Server Application Physi cal Menory

Virtual Address Space

