
Deadlock

CSE 410 - Computer Systems

November 30, 2001



30-Nov-01 CSE 410 - Deadlock 2

Readings and References

• Reading
› Chapter 8, Operating System Concepts, Silberschatz, Galvin, and

Gagne

• Other References



30-Nov-01 CSE 410 - Deadlock 3

Deadlock

• Circular waiting for resources
› Task A wants what task B has
› Task B wants what task A has

• No progress possible!
› Neither can make progress without the other’s resource
› Neither will relinquish its own resource

...

lockOne->Acquire();

...

...

lockTwo->Acquire();

...

lockTwo->Acquire();

lockOne->Acquire();

DEADLOCK!



30-Nov-01 CSE 410 - Deadlock 4

Simple Traffic Gridlock Example



30-Nov-01 CSE 410 - Deadlock 5

System Model

• There are tasks and resources

• A task follows these steps to utilize a
resource
› Acquire the resource

• If the resource is unavailable, block

› Use the resource

› Release the resource



30-Nov-01 CSE 410 - Deadlock 6

Necessary Conditions for Deadlock

• Mutual Exclusion
› The resource can’t be shared

• Hold and Wait
› Task holds one resource while waiting for another

• No Preemption
› If a task has a resource, it cannot be forced to give it up

• Circular Wait
› A waits for B, B for C, C for D, D for A

CA B

D



30-Nov-01 CSE 410 - Deadlock 7

Is Gridlock Example Deadlock?

• Mutual Exclusion
› space-time can only hold one car at a time

• Hold and wait
› I’m here, and I want to turn left, so watch out

• No preemption
› cannons are not allowed in cars at this time

• Circular wait
› blue waiting for red’s space and vice versa



30-Nov-01 CSE 410 - Deadlock 8

Dealing with Deadlock

• Deadlock Prevention
› Ensure statically that deadlock is impossible

• Deadlock Avoidance
› Ensure dynamically that deadlock is impossible

• Deadlock Detection and Recovery
› Allow deadlock to occur, but notice when it does and

try to recover

• Ignore the Problem



30-Nov-01 CSE 410 - Deadlock 9

Deadlock Prevention

• There are four necessary conditions for
deadlock

• Take any one of them away and deadlock is
impossible

• Let’s attack deadlock by
› examining each of the conditions

› considering what would happen if we threw it
out



30-Nov-01 CSE 410 - Deadlock 10

Condition: Mutual Exclusion

• Usually can't eliminate this condition
› some resources are intrinsically non-sharable

• Examples include printer, write access to a
file or record, entry into a section of code

• However, you can often mitigate this by
adding a layer of abstraction
› For example, use a print spooler, not direct

connection to the printer



30-Nov-01 CSE 410 - Deadlock 11

Condition: Hold and Wait

• Eliminate partial acquisition of resources
• Task must acquire all the resources it needs before

it does anything
› if it can’t get them all, then it gets none

• Resource utilization may be low
› If you need P for a long time and Q only at the end, you

still have to hold Q’s lock the whole time

• Starvation prone
› May have to wait indefinitely before popular resources

are all available at the same time



30-Nov-01 CSE 410 - Deadlock 12

Condition: No Preemption

• Allow preemption
› If a process asks for a resource not currently available,

block it and take away all of its other resources
› Add the preempted resources to the list of resources the

process is waiting for

• This strategy works for some resources:
› CPU state (contents of registers can be spilled to

memory)
› memory (can be spilled to disk)

• But not for others:
› printer - rip off the existing printout and tape it on later?



30-Nov-01 CSE 410 - Deadlock 13

Condition: Circular Wait

• To attack the circular wait condition:
› Assign each resource a priority
› Make processes acquire resources in priority order

• Two processes need the printer and the scanner,
both must acquire the printer (higher priority)
before the scanner

• This is the most common form of deadlock
prevention

• The only problem: sometimes forced to relinquish
a resource that you thought you had locked up



30-Nov-01 CSE 410 - Deadlock 14

Deadlock Avoidance

• Deadlock prevention is often too strict
› low device utilization

› reduced system throughput

• If the OS had more information, it could do
more sophisticated things to avoid deadlock
and keep the system in a safe state
› “If” is a little word, but it packs a big punch

› predicting all needed resources a priori is hard



30-Nov-01 CSE 410 - Deadlock 15

The Banker’s Algorithm

• Idea: know what
each process might
ask for

• Only make
allocations that
leave the system in
a safe state

• Inefficient

safe

unsafe

deadlock

Resource allocation
state space



30-Nov-01 CSE 410 - Deadlock 16

Deadlock Detection

• Build a wait-for graph and
periodically look for cycles, to
find the circular wait condition

• The wait-for graph contains:
› nodes, corresponding to tasks

› directed edges, corresponding to
a resource held by one task and
desired by the other

E

CA B

D

A waits for B
B waits for D
D waits for A

deadlock!



30-Nov-01 CSE 410 - Deadlock 17

Deadlock Recovery

• Once you’ve discovered deadlock, what next?
• Terminate one of the tasks to stop circular wait?

› Task will likely have to start over from scratch
› Which task should you choose?

• Take a resource away from a task?
› Again, which task should you choose?
› How can you roll back the task to the state before it had

the coveted resource?
› Make sure you don’t keep on preempting from the same

task: avoid starvation



30-Nov-01 CSE 410 - Deadlock 18

Ignoring Deadlock

• Not a bad policy for operating systems

• The mechanisms outlined previously for
handling deadlock may be expensive
› if the alternative is to have a forced reboot once

a year, that might be acceptable

• However, for thread deadlocks, your users
may not be quite so tolerant
› “the program only locks up once in a while”


