
Synchronization Part 2

CSE 410 - Computer Systems

November 28, 2001

28-Nov-01 CSE 410 - Synchronization Part 2 2

Readings and References

• Reading
› Chapter 7, Sections 7.4 through 7.7, Operating System Concepts,

Silberschatz, Galvin, and Gagne

• Other References

28-Nov-01 CSE 410 - Synchronization Part 2 3

Shared Stack

void Stack::Push(Item *item) {

 item->next = top;

 top = item;

}

• Suppose two threads, red and blue, share
this code and a Stack s

• The two threads both operate on s
› each calls s->Push(…)

• Execution is interleaved by context switches
28-Nov-01 CSE 410 - Synchronization Part 2 4

• Now suppose that a context switch occurs at
an “inconvenient” time, so that the actual
execution order is

1 item->next = top;

2 item->next = top;

3 top = item;

4 top = item;

Stack Example

context switch from red to blue

context switch from blue to red

Disaster Strikes

top

time 0

top

time 1

top

time 2

top

time 3

top

time 4

28-Nov-01 CSE 410 - Synchronization Part 2 6

Shared Stack Solution

• How do we fix this using locks?

void Stack::Push(Item *item) {

 lock->Acquire();

 item->next = top;

 top = item;

 lock->Release();

}

28-Nov-01 CSE 410 - Synchronization Part 2 7

Correct Execution

• Only one thread can hold the lock

lock->Acquire();

item->next = top;

top = item;

lock->Release();

lock->Acquire();

 wait for lock acquisition

item->next = top;

top = item;

lock->Release();

Correct Execution

top top

Red
acquires

the lock

Blue tries to
acquire the

lock

top

Red
releases

the lock

Blue
acquires
the lock

top

top

Blue
releases

the lock

28-Nov-01 CSE 410 - Synchronization Part 2 9

How can Pop wait for a Stack item?

› want to go to sleep inside the critical section
› other threads won't be able to run because Pop holds the lock
› condition variables make it possible to go to sleep inside a critical

section, by atomically releasing the lock and going to sleep

Stack::Push(Item * item) {

 lock->Acquire();

 push item on stack

 lock->Release();

}

Item * Stack::Pop() {

 lock->Acquire();

 pop item from stack

 lock->Release();

 return item;

}

• Synchronized stack using locks

28-Nov-01 CSE 410 - Synchronization Part 2 10

Monitors

• Monitor: a lock and condition variables
• Key addition is the ability to inexpensively and

reliably wait for a condition change
• Often implemented as a separate class

› The class contains code and private data
› Since the data is private, only monitor code can access it
› Only one thread is allowed to run in the monitor at a time

• Can also implement directly in other classes using
locks and condition variables

28-Nov-01 CSE 410 - Synchronization Part 2 11

Condition Variables

• A condition variable is a queue of threads
waiting for something inside a critical section

• There are three operations
› Wait()--release lock & go to sleep (atomic);

reacquire lock upon awakening
› Signal()--wake up a waiting thread, if any
› Broadcast()--wake up all waiting threads

• A thread must hold the lock when doing
condition variable operations

28-Nov-01 CSE 410 - Synchronization Part 2 12

Stack with Condition Variables

• Pop can now wait for something to be pushed
onto the stack

Stack::Push(Item *item) {

 lock->Acquire();

 push item on stack

 condition->signal(lock);

 lock->Release();

}

Item *Stack::Pop() {

 lock->Acquire();

 while(nothing on stack) {

 condition->wait(lock);

 }

 pop item from stack

 lock->Release();

 return item;

}

28-Nov-01 CSE 410 - Synchronization Part 2 13

Database Readers and Writers

• Many threads may read the database at the
same time

• If any thread is writing the database, then no
other thread may read or write
› when a reader enters, it must wait if there is a

writer inside
› when a writer enters, it must wait if there is a

reader or writer inside
› writers have priority over readers

28-Nov-01 CSE 410 - Synchronization Part 2 14

Constraints

• Reader can access the database when no
writers are active
› condition okToRead

• Writer can access the database when no
readers or writers are active
› condition okToWrite

• Only one thread of any type can manipulate
the shared state variables at a time
› lock

28-Nov-01 CSE 410 - Synchronization Part 2 15

Basic Algorithm

Database::read()

 wait until no writers

 access database

 checkout -- wake up waiting writer (if any)

Database::write()

 wait until no readers or writers

 access database

 checkout -- wake up waiting readers or writers

28-Nov-01 CSE 410 - Synchronization Part 2 16

State Variables

Condition okToRead = TRUE; // “signaled”
Condition okToWrite = TRUE; // “signaled”
Lock lock = FREE; // “signaled”

AR=0; // number of active readers
AW=0; // number of active writers
WR=0; // number of waiting readers
WW=0; // number of waiting writers

Database::read() {

 StartRead(); // wait until it is okay to read

 access database // read

 DoneRead(); // checkout -- wakeup a waiting writer

}

Database::StartRead() {

 lock->Acquire(); // acquire lock when accessing shared variables

 while(AW + WW > 0) { // while there are waiting or active writers

 WR++; // I am a waiting reader

 okToRead->Wait(lock); // wait until it is okay to read

 WR--; // I am no longer a waiting reader

 }

 AR++; // it is now okay to read. I am an active reader

 lock->Release(); // release lock after accessing shared variables

}

Database::DoneRead() {

 lock->Acquire(); // acquire lock when accessing shared variables

 AR--; // I am no longer an active reader

 if(AR==0 && WW > 0) { // if no one else is reading & someone wants to write

 okToWrite->Signal(lock); // signal that it's okay to write

 }

 lock->Release(); // release lock after accessing shared variables

}

Database::write() {

 StartWrite(); // wait until it is okay to write

 access database // read

 DoneWrite(); // checkout -- wakeup a waiting writer or readers

}

Database::StartWrite() {

 lock->Acquire(); // acquire lock when accessing shared variables

 while(AW + AR > 0) { // while there are active writers or readers

 WW++; // I am a waiting writer

 okToWrite->Wait(lock); // wait until it is okay to write

 WW--; // I am no longer a waiting writer

 }

 AW++; // it is now okay to write. I am an active writer

 lock->Release(); // release lock after accessing shared variables

}

Database::DoneWrite() {

 lock->Acquire(); // acquire lock when accessing shared variables

 AW--; // I am no longer an active writer

 if(WW > 0) { // give priority to waiting writers

 okToWrite->Signal(lock); // signal that it's okay to write

 } else if (WR > 0) { // otherwise, if there are any waiting readers

 okToRead->Broadcast(lock);// signal that it's okay to read

 }

 lock->Release(); // release lock after accessing shared variables

}

28-Nov-01 CSE 410 - Synchronization Part 2 19

Semaphores

• Semaphores were first synchronization mechanism
› Don't use semaphores, use condition variables instead

• The semaphore is an integer variable that has two
atomic operations:
› P() (the entry procedure) wait for semaphore to

become positive and then decrement it by 1
› V() (the exit procedure) increment semaphore by 1,

wake up a waiting P if any
› P and V are from the Dutch for probieren (to try) and

verhogen (to increment) - named by Dijkstra

28-Nov-01 CSE 410 - Synchronization Part 2 20

Synchronization in NT

• NT has locks (known as mutexes)
› CreateMutex--returns a handle to a new mutex
› WaitForSingleObject--acquires the mutex
› ReleaseMutex--releases the mutex

• NT has events instead of condition variables
› CreateEvent--returns a handle to a new event
› WaitForSingleObject--waits for the event to

happen
› SetEvent--signals the event, waking up one waiting

thread

28-Nov-01 CSE 410 - Synchronization Part 2 21

Advice for Threads Programming #1

• Always do things the same way
› you can focus on the core problem because the

standard approach becomes a habit
› makes it easier for other people to read (modify

and debug) your code
› you might be able to cut corners occasionally

and save a line or two of code
• spend time convincing yourself it works
• spend time convincing others that it works with your

comments
• NOT WORTH IT!

28-Nov-01 CSE 410 - Synchronization Part 2 22

Advice for Threads Programming #2

• Always use monitors (locks + condition
variables) or events
› 99% monitor/event code is more clear than

semaphore code because monitor code is "self-
documenting"

› occasionally a semaphore might fit what you
are doing perfectly

› what if the code needs to change, is it still a
perfect fit?

28-Nov-01 CSE 410 - Synchronization Part 2 23

Advice for Threads Programming #3

• Always acquire the lock at the beginning of
a procedure and release it before returning
› if there is a logical chunk of code that requires

holding a lock, then it should probably be its
own procedure

› we are sometimes lazy about creating new
procedures when we should (don't be lazy)

› always do things the same way (rule #1)

28-Nov-01 CSE 410 - Synchronization Part 2 24

Advice for Threads Programming #4

• Always use while instead of if when checking a
synchronization condition

• Many implementations allow for a thread to be waked up
even though the condition is not true. Must wait again.

Item * Stack::Pop() {

 lock->Acquire();

 while(nothing on stack) {

 condition->wait(lock);

 }

 pop item from stack

 lock->Release();

 return item;

}

Item * Stack::Pop() {

 lock->Acquire();

 if(nothing on stack) {

 condition->wait(lock);

 }

 pop item from stack

 lock->Release();

 return item;

}

